

Water: A regional view

TEQIP Workshop 12th Sept 2014 Pooja Prasad

Agenda

- The regional perspective
 - Urban water
 - Rural water
- Regional water planning
 - Supply side, demand side
 - Planning activity
- Sample studies in surface water and ground water

The regional perspective

- TEQIP mandate: Colleges to be regionally relevant
 - Identify problems → academic projects → deliver to regional stakeholders
- The regional approach
 - The appropriate scale to observe trade-offs, interconnectedness of issues, stakeholders, policy
 - Requires interdisciplinary skills: makes an ideal case for the role of universities

Regional view

Urban/ peri-urban view

Urban water cycle

Rural Water

(Private Inigation well

Note: Ground vs. surface water Rain-fed vs. Irrigated farms Drinking water Public/ Private sources Reservoirs/ Dams Piped water assets Waste water?

Ambivali Bhaudhachiwadi well 🖗

Ambilvall Privete Well 1

Ambivali PWS Source well

Private borewell

Ambivali

Anbivali lake

Ambivali Dam

Ambivali New PWS tank PW1

© 2014 Google

Image @ 2014 CNES / Astrium

261 m

Agenda

- The regional perspective
 - Urban water
 - Rural water
- Regional water planning
 - Supply side, demand side
 - Planning activity
- Sample studies in surface water and ground water

Regional Water Planning – The Challenges and Need

- Competing demand from different sectors
- Overcoming seasonality problems in water availability and use
- Managing water quality
- Addressing normative concerns: efficiency, equity, sustainability

Regional Planning- Key Attributes

- The supply
 - Groundwater, Surface water, rain water
- The demand
 - Domestic use, agriculture, industry
 - Cities, towns, large GPs, villages
- Policy and Institutions
 - Current regulations and norms (e.g. reservation priorities, sewerage requirements, waste water regulations..)
 - Institutions and stakeholders (supply side, demand side, implementing agents)
- Planning process (quantity and quality)
 - Matching water supply with demand/ allocation, tariff
 - long term asset planning
 - Scarcity assessment and management
 - Long term issues of water balance, equity and sustainability

Agents

- End-users provide service requirements
- User bodies (WUA, VWSSCs, ULBs): Representative bodies that implement, own and manage schemes
- Government departments (MJP, RWS, MI, GSDA): Technical design inputs
- Administrative bodies (Block/district/municipal level): approvals and channelling funds
- Elected representatives: people's voice
- Regional planning and monitoring?
 - we have a role here!

Estimating demand – Domestic use

- Rural norm
 - 55 lpcd of water available on a sustained basis within 100m of all households (NRDWP 2013)
- Urban Norm
 - Much higher
 - Norm ranges from 70 lpcd to 150 lpcd
 - Mumbai, Pune: 200+ lpcd
 - Sewerage requirements based on design lpcd

Purpose	Quantity (lpcd)
Drinking	3
Cooking	5
Bathing	15
Washing utensils	10
and house	
Ablution/Toilets	10
Washing of Clothes and	12
other uses	
Total	55

Estimating Demand: non-domestic

- Agriculture demand
 - Kharif crop typically rain fed
 - Rabi and Hot Weather crops irrigated
- Others:
 - Industries/ Non-farm enterprises
 - Public school, offices

We need to work with projected future demand!

Water Supply

- Surface Water lake, rivers, reservoirs, canals dams, farm ponds
- Groundwater dug wells, borewells, springs sub surface bunds, trenches, contour bunds etc.
- Rainwater Rain water harvesting structures

Planning – Putting it all together

- Design and logistics
 - Design and optimization of the distribution network (pipes, canals)
 - Design of water treatment plant
 - Logistics: cost of energy, capital and O&M
 - Simulation of the operation schedule
- Tariff, Subsidy and Ability to Pay:
 - metering, tariff structure
 - Industry/ commercial establishments subsidize domestic use
 - Irrigation: generally subsidized by state
 - Poor households generally subsidized within community
- Institutions, monitoring and feedback mechanism

Agenda

- The regional perspective
 - Urban water
 - Rural water
- Regional water planning
 - Supply side, demand side
 - Planning activity
- Sample studies in surface water and ground water

Example: Tanker fed villages in Thane district

Ongoing Projects

- Regional analysis of tanker-fed habitations Mokhada, Shahpur
- GIS as a representation tool

Surface sources

Tokarkhand reservoir

Thangaon, Nashik

Musai Reservoir

Small/ Medium Dams: Salient Features

1	Name of Project	:	Musai M.I.Scheme	Dolkhamb M.I.Scheme.					
2	Source	:	Local Nalla	Local Nalla					
	Location: State	:	Maharashtra	Maharashtra					
	District	:	Thane	Thane					
	Taluka	:	Shahapur	Shahapur		[1	
3	Village	:	Musai	Dolkhamb	1	Name of Project	:	Musai M.I.Scheme	Dolkhamb M.I.Scheme.
4	Catchment Area	:	1.76 Sq.mile	3.68 Sq.miles		<u>CANAL</u>			
5	Average Annual Rainfall	:	107.7"	107.46"	22	Canal length	:	3.00 Km.	7.17 Km.
6	75% dependable yield	:	244 Mcft.	-	23				
7	Gross Storage	:	134.26 Mcft.	166.08 Mcft.	24	Canal Capacity	:	12.72 Cusecs	10.21 Cusecs, 4.875 Cusec
8	Dead Storage	:	5.75 Mcft.	9.32 Mcft.					
9	Live Storage	:	128.51 Mcft.	156.76 Mcft.	25	Area under command		600 Acres	196 Hect.
10	Reservation for U/s	:	-	-		(Irrigable)			
11	Annual Gross Utilisation	:	134.26 Mcft.	166.08 Mcft.		I) Gross Command	:	1300 Acres	980 Acres
12	Top of Dam Level	:	103.00 m.	134.00 m.		ii)Cultural Command	:	1200 Acres	780 Acres
13	H.F.L.	:	101.50 m.	132.50 m.		iii) Irrigable Command	:	600 Acres	496 Acres
14	F.R.L.	:	100.00 m.	131.00 m.		Village benefitted	:	1) Musai, 2) Khaire.	1) Dolkhamb 2) Hedwali
15	M.D.D.L.	:	89.00 m.	120.00 m.		Village (Taluka wise)		-	3) Bandanpada 4) Sakurli
16	Max. Height of Dam	:	89.00 m.	19.76 m.					
17	Type of Dam	:	17.90 m.	Earthen Dam.	27	Total Cost of the Project	:	Rs.11,110.00	Rs.17,03,275/-
18	Length of Earthen Dam	:	Earthen Dam.	213 m.	28	B.C.Ratio	:		2.31
19	Length of Waste Weir	:	44 m.	60 m.					
20	Max.Flood discharge	:	35.52 Cusecs	9284 Cusecs	ļ				
21	Location of Waste Weir	:	Leftside	Rightflank					
	Submergence area	:		65.59 Hect.	ļ				20

Annual Water Account for Minor Irrigation Irrigation Year:- 2010-11 Name of Circle:- TIC Tha	İ						
Name of Division :- TMID Kalwa Thane	26	27	28	29	30	31	32
Project No>	635	636	637	638	639	640	641
Name of Scheme	Adivali	Dolkhamb	Jambhe	Kharade	Musai	Velholi	Hattipada
Type viz. LMI, MI, LIS, ST etc.	MI	MI	MI	MI	MI	MI	MI
District	Thane	Thane	Thane	Thane	Thane	Thane	Thane
Taluka	Shahapur	Shahapur	Shahapur	Shahapur	Shahapur	Shahapur	Vasai
Sub-basin No.	21	21	21	21	21	21	21
1. Designed Storage in Moum							
a. Gross	2.220	4.703	5.182	2.316	3.800	3.245	2.058
b. Live	2.030	4.439	4.842	2.054	3.640	2.997	1.923
Maximum live storage observed in the year	2.030	4.439	4.842	2.054	3.640	2.997	1.923
3. Projected water use in Moum for							
a. Kharif	0.000	0.000	0.000	0.000	0.000		0.000
b. Rabi	2.030	4.439	4.842	2.054	3.640	2.997	1.923
c. Hot weather	0.000	0.000	0.000	0.000	0.000		0.000
d Non irrigation	0.000	0.000	0.000	0.000	0.000	0.000	0.000
e.Total (3 a+3b+3c+3d)	2.030	4.439	4.842	2.054	3.640	2.997	1.923
4. Water drawn at canal head for irrigation							
a. Kharif	0.000	0.000		0.000	0.000		0.000
b. Rabi	0.945	0.400	1.357	0.950	1.290	1.560	0.300
c. Hot weather	0.000	0.000	0.000	0.000	0.000	0.000	0.000
d Total (4a+4b+4c)	0.95	0.00	1.36	0.95	1.29	1.56	0.30
5. Lifts From Tank							
a. Kharif	0.000	0.000	0.000	0.000	0.000		0.000
b. Rabi	0.000	0.000	0.000	0.000	0.000	0.000	0.000
c. Hot weather	0.000	0.000	0.000	0.000	0.000		0.000
6. Evaporation Losses	0.179	0.609	0.350	0.195	0.515	0.420	0.240
7. Leakages through dam	0.668	1.887	0.000	0.028	0.625	0.260	1.271
8. Total (4d+5+6+7)	1.792	2.496	1.707	1.173	2.430	2.240	1.811
9. Actual Area Irrigated by Canals							
a. Kharif							
i) Area	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ii) Irrigation System Performance (ha/N b. Rabi	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	20.70	10.00	108.00	70.00	85.00	00.10	15.00
i) Area	39.70 42	18.30 46	106.90 79	70.00 74	65.00	90.13 58	15.00 50
ii) Irrigation System Performance (ha/N c. Hot weather	42	40	19	/4	50	56	50
i) Area							
ii) Irrigation System Performance (ha/N	0	0	0	0	0	0	0
			v				
10. Actual Area Irrigated by Tank lifts a. Kharif							
i) Area							
ii) Irrigation System Performance (ha/Mcum)	0	0	0	0	0	0	0
b. Rabi							
i) Area							
ii) Irrigation System Performance (ha/Mcum)	0	0	0	0	0	0	0
c. Hot weather							
i) Area							
ii) Irrigation System Performance (ha/Mcum)	0	0		0	0	0	0
11. Non irrigation use	0.150				0.140	0.182	0.000
12. Live Storage on 30 th June	0.088	1.393	2.885	0.521	1.070	0.575	0.112
13. Replenishment in the month June							_
14. Area Irrigated on wells/rivers/drains in	0	0	0	0	0	0	0

Musai Reservoir and tanker fed villages

Musai reservoir- Proposed network

Ground water

- Primary source for drinking water and irrigation
- Increasing exploitation of groundwater a growing concern
- Planning questions Scarcity assessment and management, interventions for increasing groundwater recharge, creating alternatives to GW

use

Regional groundwater modeling– Observation well data

Sample studies: Groundwater analysis

- Large scale watershed activities for GW recharge
 - Analysis of watershed interventions and programs
- Small- scale watershed modeling for designing interventions to strengthen drinking water wells

Key Engineering Activities

Rural

security

Urban

• Single and multi-village Design of WS schemes schemes, bulk water grid Design of sanitation systems Ensuring source quality and • Energy and water efficiency quantity • Simulation of schedules Regional GW enhancement • Tariff structure through watershed activity • **Consultancy and Research** Planning Regional assessment expertise Failure analysis and Water balance computations – alternatives basin and district • Supporting programs like • Scarcity and mitigation MSNA, NRDWP, IWMP GIS and planning processes, annual action plans Long-term drinking water

Case studies

- Next up- 4 examples of CTARA's academic output
 - Groundwater and watershed analysis
 - Rural water supply planning and design
 - Urban water supply scheme analysis
 - Water quality/ sanitation

Thank you

