Lecture 24 Examples of Bode Plots

Process Control Prof. Kannan M. Moudgalya

IIT Bombay Thursday, 26 September 2013

- 1. First order transfer function recall
- 2. Gain, integral and derivative
- 3. Adding Bode plots
 - 3.1 Two first order systems in series
 - 3.2 Lead transfer function
 - 3.3 First order system with delay

Recall: First order transfer function

•
$$G(s) = \frac{1}{\tau s + 1}$$
, $G(j\omega) = \frac{1}{j\omega\tau + 1}$
• $|G(j\omega)| = \frac{1}{\sqrt{\omega^2\tau^2 + 1}}$
• $\omega \ll 1$, $|G(j\omega)| = 1$,

・ロト ・回ト ・ヨト ・ヨト

Recall: First order transfer function

•
$$G(s) = \frac{1}{\tau s + 1}$$
, $G(j\omega) = \frac{1}{j\omega\tau + 1}$
• $|G(j\omega)| = \frac{1}{\sqrt{\omega^2\tau^2 + 1}}$
• $\omega \ll 1$, $|G(j\omega)| = 1$, $M = 20 \log |G(jw)| = 0$
• Asymptote is $M = 0$
• $\omega \gg 1$, $|G(j\omega)| = \frac{1}{\omega\tau}$, $M = -20 \log \omega\tau$
• Asymptote is $M = -20 \log \omega\tau$
• $\omega = \omega_1 \Rightarrow M = -20 \log \omega_1 \tau$
• $\omega = 10\omega_1 \Rightarrow M = -20 \log \omega_1 \tau - 20$
• Slope of -20 dB per decade

Corner Frequency

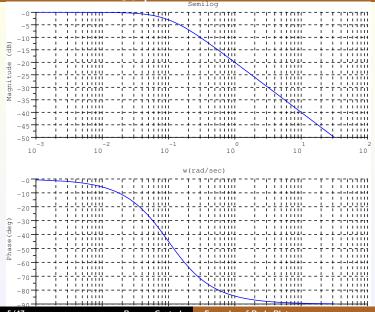
•
$$G(j\omega) = \frac{1}{j\omega\tau + 1}$$

• $|G(j\omega)| = \frac{1}{\sqrt{\omega^2\tau^2 + 1}}$

For $\omega \ll 1$, the asymptote is $|G(j\omega)| = 1$ $\omega \gg 1$, the asymptote is $|G(j\omega)| = \frac{1}{\omega\tau}$

- Two asymptotes intersect at $\omega = 1/ au$
- w = $1/\tau$ is known as the corner frequency

Bode plot of $\frac{1}{10s+1}$ in semilog scale



Pile

Process Control

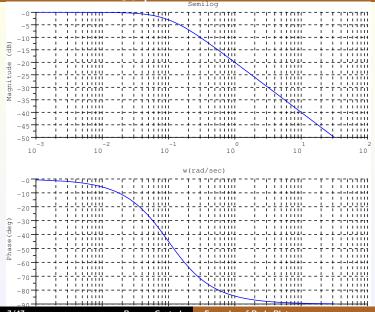
Value at the corner frequency

•
$$|G(j\omega)| = \frac{1}{\sqrt{\omega^2 \tau^2 + 1}}$$

• $\omega = 1/\tau$ is known as the corner frequency
• At $\omega = 1/\tau$, what is M?
• M = -20 log $\sqrt{2} = -10 \log 2 \simeq -3 \text{ dB}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Bode plot of $\frac{1}{10s+1}$ in semilog scale



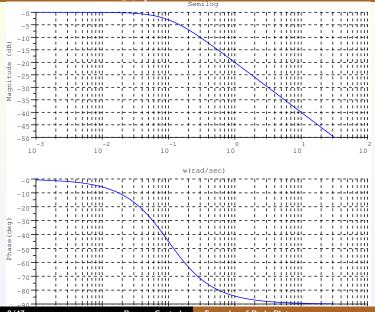
Process Control

Phase relations for a simple pole

•
$$G(s) = \frac{1}{\tau s + 1}$$
, $G(j\omega) = \frac{1}{j\omega\tau + 1}$
• $\omega \ll 1$, $G(j\omega) = 1$, $\phi = \angle G(jw) = 0$
• $\omega \gg 1$, $G(j\omega) = \frac{1}{j\omega\tau}$, $\phi = -90^{\circ}$
• For $\omega = 1/\tau$, $G(j\omega) = \frac{1}{j1 + 1}$
• $\phi = -45^{\circ}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Bode plot of $\frac{1}{10s+1}$ in semilog scale



Pile

Process Control

MCQ: First order system

Bode plot of a first order system has the following properties:

- A Slope = -20dB/decade for large frequency
- B w = 1/ au at corner frequency
- C $\phi = -45^{\circ}$ at corner frequency
- D Phase reached at large frequencies = -90°

Choose the correct answer:

- 1. A and B only
- 2. A and C only
- 3. A, B and C only
- 4. All four are correct

Answer: 4

10/47

2. Gain, integral and derivative

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Effect of Gain on Magnitude Bode Plot

- $G(s) \stackrel{\triangle}{=} 100G_1(s)$
- $M = 20 \log |G(j\omega)|$ and $M_1 = 20 \log |G_1(j\omega)|$
- Both M and M₁ are plotted in the same graph, in dB (decibel units)
- M and M_1 are related in the following way:
 - 1. M is higher than M_1 by 100 units
 - 2. M is higher than M_1 by 40 units
 - 3. M is lower than M_1 by 100 units
 - 4. The slopes of M and M_1 are different by 100 units

Answer: 2

Effect of Gain on Phase Bode Plot

• $G(s) \stackrel{\triangle}{=} 100G_1(s)$

- $\phi = \angle \mathsf{G}(\mathsf{j}\omega)$ and $\phi_1 = \angle \mathsf{G}_1(\mathsf{j}\omega)$
- Both ϕ and ϕ_1 are plotted in the same graph

 ϕ and ϕ_1 are related in the following way:

- 1. ϕ is higher than ϕ_1 by 100 units
- 2. ϕ is higher than ϕ_1 by 40 units
- 3. Both ϕ and ϕ_1 plots are identical
- 4. There is no relation between ϕ and ϕ_1 Answer: 3

- G(s) $\stackrel{ riangle}{=}$ KG₁(s), K > 0
- $M = 20 \log |G(j\omega)| = 20 \log |KG_1(j\omega)|$
- M = 20 log K+ 20 log $|\mathsf{G}_1(\mathsf{j}\omega)|$, K > 0
- Example: K = 100
- $\mathbf{M} = 40 + 20 \log |\mathsf{G}_1(\mathsf{j}\omega)|$
- At every frequency, add 40 dB!
- Phase plots of G₁ and G are identical

Effect of integral mode or pole at zero

•
$$\phi = \angle \mathsf{G}(\mathsf{j}\omega) = -90^\circ$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

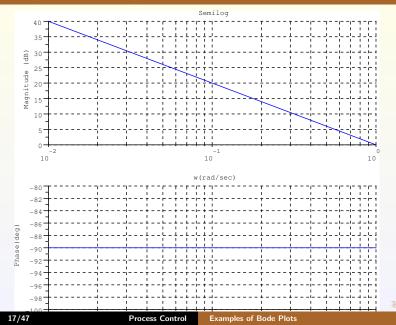
exec('bodegen-1.sci');

- s = %s;
- num = 1;
- den = s;

```
w = 0.01:0.002:%pi^0;
LF = "semilog"
```

```
bodegen(num, den, w, LF);
```


Bode plot of a pole at zero



Bode plot of pure derivative action

- ▶ G(s) = s
- $G(j\omega) = j\omega$
- $M = 20 \log |G(j\omega)| = 20 \log \omega$
- ▶ Has a slope of +20 dB per decade
- $\phi = \angle G(j\omega) = +90^{\circ}$

Exchange the values of num and den and execute

() < </p>

3. Adding Bode Plots

イロン イヨン イヨン イヨン

3a. Two first order systems in series

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

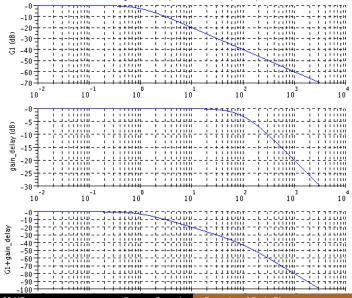
Product of two first order systems

$$G(s) = \frac{1}{s+1} \frac{1}{0.01s+1}$$

- Plot M for each transfer function separately
- ▶ What are the corner frequencies? For the first,
- it is 1
- For the second, it is 1/0.01 = 100
- Add the two
- Draw ϕ for each transfer function separately
- Add the two
- Scilab code and the plots are given next

Magnitude Bode Plot

Magnitude Bode plot as sum of component plots

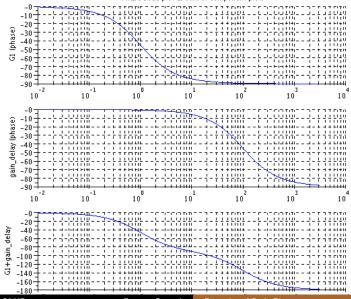


23/47

Process Control

Phase Bode Plot

Phase Bode plot as sum of component plots



Process Control

Scilab code:

```
exec('bodesum -2.sci');
s = %s;
G1 = 1/(s+1);
gain = 1/(0.01*s+1);
delay = 0;
w = 0.01:0.008*%pi:1000*%pi;
bodesum_1(G1, delay, gain, w);
```


Scilab code bodesum-2.sci I

Scilab code:

// Bode plot as a sum of components

function bodesum_1(G1, delay, gain, w)

G1_freq = horner(G1,%i*w); G1_mag = 20*log10(abs(G1_freq)); gain_freq = horner(gain,%i*w); gain_mag = 20*log10(abs(gain_freq));

Scilab code bodesum-2.sci II

```
plot2d(w,G1_mag, logflag='ln', style =
   2);
xgrid();
xtitle ('Magnitude Bode plot as sum
  of component plots ', '', 'G1 (dB) ')
subplot (3,1,2)
plot2d (w, gain_mag, logflag="ln", style
  = 2);
xgrid();
xtitle('','','gain_delay_(dB)');
subplot(3,1,3)
```

Scilab code bodesum-2.sci III

```
plot2d (w, G1_mag+gain_mag, logflag=" In
    ", style = 2);
xgrid ();
xtitle ('', 'Phase(deg)', 'G1+
    gain_delay');
```

G1_ph = phasemag(G1_freq);
gain_ph = phasemag(gain_freq) -delay
*w*180/%pi;

```
xset('window',1); clf();
subplot(3,1,1)
```

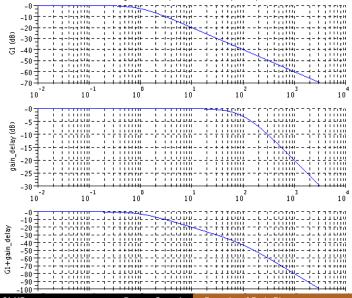

Scilab code bodesum-2.sci IV

```
plot2d(w, G1_ph, logflag='ln', style =
  2);
xgrid();
xtitle ('Phase_Bode_plot_as_sum_of_
  component_plots','','G1_(phase)')
subplot (3,1,2)
plot2d (w, gain_ph , logflag="ln", style
 = 2):
xgrid();
xtitle('','','gain_delay_(phase)');
subplot(3,1,3)
```

```
plot2d(w,G1_ph+gain_ph,logflag="ln",
    style = 2);
xgrid();
xtitle('','Phase(deg)','G1+
    gain_delay');
endfunction;
```


Magnitude Bode Plot

Magnitude Bode plot as sum of component plots

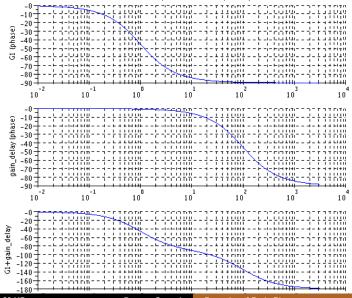


31/47

Process Control

Phase Bode Plot

Phase Bode plot as sum of component plots



32/47

Process Control

3b. Lead Transfer Function

イロン イヨン イヨン イヨン

Lead Transfer Function

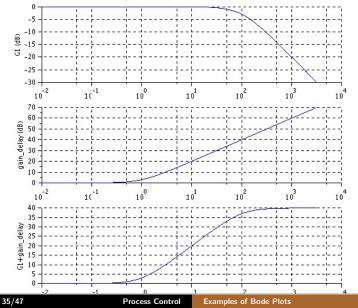
Consider the lead transfer function:

$$\mathsf{G}(\mathsf{s}) = \frac{\mathsf{s}+1}{0.01\mathsf{s}+1}$$

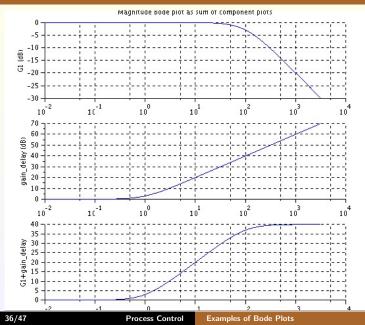
- Corner frequencies are 1 and 100
- Magnitude plot of s + 1 has a slope of +20 dB
- Phase plot of s + 1 increases, goes to 90°
- Magnitude plot of 1/(0.01s + 1) has a slope of -20 dB
- Phase plot of 1/(0.01s + 1) decreases, goes to -90°
- Add the two
- Scilab code is given next

Magnitude Bode Plot

Magnitude Bode plot as sum of component plots



Phase Bode Plot



```
exec('bodesum -2.sci');
s = %s;
G1 = 1/(0.01*s+1);
gain = (s+1);
delay = 0;
w = 0.01:0.008*%pi:1000*%pi;
bodesum_1(G1, delay, gain, w);
```


3c. First order system with delay

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Effect of Delay on Magnitude Bode Plot

•
$$G(s) \stackrel{\triangle}{=} G_1(s)e^{-Ds}$$

- $M = 20 \log |G(j\omega)|$ and $M_1 = 20 \log |G_1(j\omega)|$
- Both M and M₁ are plotted in the same graph, in dB (decibel units)

M and M_1 are related in the following way:

- 1. M is lower than M_1 by D units
- 2. M is lower than M_1 by 1 unit
- 3. M and M_1 are identical
- 4. There is no relation between M and M_1 Answer: 3

Effect of Delay on Phase Bode Plot

•
$$G(s) \stackrel{\triangle}{=} G_1(s)e^{-Ds}$$

- $\phi = \angle \mathsf{G}(\mathsf{j}\omega)$ and $\phi_1 = \angle \mathsf{G}_1(\mathsf{j}\omega)$
- **•** Both ϕ and ϕ_1 are plotted in the same graph
- ϕ and ϕ_1 are related in the following way:
 - 1. ϕ is lower than ϕ_1 by D units
 - 2. ϕ is obtained from ϕ_1 by subtracting D ω at every ω
 - 3. Both ϕ and ϕ_1 plots are identical
- 4. There is no relation between ϕ and ϕ_1 Answer: 2

Scilab code for delay

•
$$G(s) = e^{-Ds}$$

•
$$G(j\omega) = e^{-jD\omega}$$

•
$$G(j\omega) = \cos D\omega - j \sin D\omega$$

$$\bullet \phi = \angle \mathsf{G}(\mathsf{j}\omega) = \mathsf{tan}^{-1} \left[-\frac{\mathsf{sin}\,\mathsf{D}\omega}{\mathsf{cos}\,\mathsf{D}\omega} \right]$$

$$\blacktriangleright \phi = -\mathsf{D}\omega$$

- What about magnitude plot?
- M = 1 for all ω

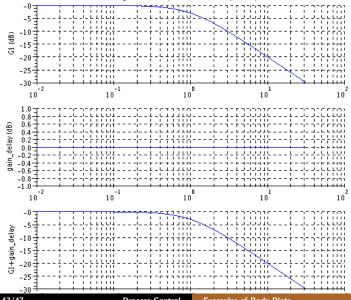
Scilab code bode-3.sce

Bode plot of
$$G(s) = \frac{1}{s+1}e^{-0.01s}$$

exec('bodesum-2.sci'); s = %s; G1 = 1/(s+1); gain = 1; delay = 0.01; w = 0.01:0.008*%pi:10*%pi; bodesum_1(G1, delay, gain, w);

Magnitude Bode Plot

Magnitude Bode plot as sum of component plots

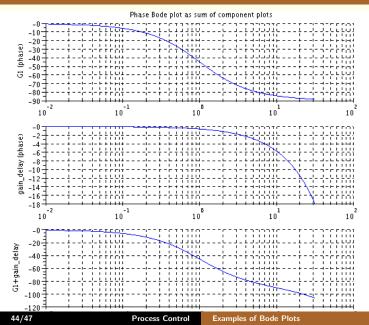


43/47

Process Control

Examples of Bode Plots

Phase Bode Plot



Guidelines for drawing Bode plots

- Axes: log axis for abscissa and normal axis for ordinate
- For each component transfer function,
 - Draw the asymptotes
 - Locate the value at corner frequency
 - Connect approximately and complete the plots
- Add the component values

Lecture 25 Stability Analysis through Bode Plots

Process Control Prof. Kannan M. Moudgalya

IIT Bombay Monday, 30 September 2013

- 1. Self study of a second order underdamped system
- 2. Stability analysis
- 3. Gain margin and phase crossover frequency
- 4. Phase margin and gain crossover frequency

1. Second order underdamped system

ヘロン 人間 とくほど 人間と

Homework: Bode plot of a second order underdamped system

・ロト ・同ト ・ヨト ・ヨト

Draw the bode plot of

$$G(s) = \frac{1}{s^2 + 8s + 64}$$

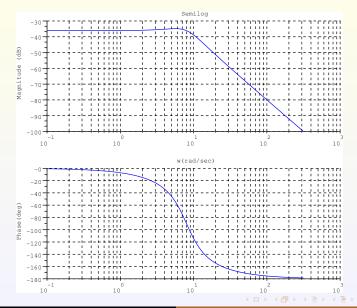
► $ω_n = 8$, ζ = 0.5

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

```
1 exec('bodegen-1.sci');
```

- 2
- s = %s;
- $_{4}$ num = 1;
- $_{\rm 5}$ den = s^2+8*s+64;
- 6
- w = 0.1:0.02:100*%pi;
- » LF = "semilog"
- 9
- bodegen(num,den,w,LF);

Bode plot of an underdamped pole



Process Control

2. Stability analysis using Bode plots

ヘロン 人間 とくほど 人間と

Instability Problem Statement

- ► G(s) is open loop transfer function
- Does not have poles and zeros on RHP
- Put in a closed loop with a proportional controller K_c
- As K_c increases, closed loop system becomes unstable
- We will first see the root locus plot conditions

Root locus stability conditions

- Root locus is the locus of roots of $1 + K_c G(s) = 0$, as K_c goes from 0 to ∞
- $1 + K_c G(s) = 0$ or $K_c G(s) = -1$
- Magnitude and phase relations:
- ► $|K_cG(s)| = 1$ $∠K_cG(s) = -180^\circ, +180^\circ, \pm 540^\circ, \text{ etc.}$
- We will now see the conditions using Bode plot

Stability conditions for Bode plots

- To obtain Bode plots, substitute $s = j\omega$
- This corresponds to the imaginary axis of s plane
- ► Root locus conditions become, $|K_uG(j\omega)| = 1$, $∠K_uG(j\omega) = -180^\circ, \pm 540$, etc.
- Because it is the boundary of instability, we have used K_u
- $K_c > K_u \Rightarrow$ closed loop system unstable
- Can analyse stability using Bode plot
- Can check by how much we can move
 - magnitude plot by adding gain
 - phase plot by adding delay

Restrict focus to class of systems

- Restrict Bode plot analysis to a class of systems
- ▶ For K_c < K_u, system is stable
- For $K_c \ge K_u$, system is unstable

Find a proportional controller $K_{\rm c}$ that will make

$$G(s) = \frac{15}{(s+1)(s+2)(s+3)}$$

unstable, when put in a feedback loop.

Stability condition for example

► 1 + K_cG(s) = 0
1 +
$$\frac{15K_c}{(s+1)(s+2)(s+3)} = 0$$

► (s + 1)(s + 2)(s + 3) + 15K_c = 0
► s³ + 6s² + 11s + (15K_c + 6) = 0
► Cuts imaginary axis at K_c = 4

- ▶ K_u = 4
- ▶ Stable for K_c < 4

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Scilab code bode-10.sce

```
exec('bodedel.sci');
1
2
_{3} s = %s:
_{4} K = 1:
_{5} D = 0.1;
 num = 15:
\tau den = (s+1)*(s+2)*(s+3);
<sup>∗</sup> G = num/den;
9
  w = 0.01:0.02:5;
10
11
  bodedel(G,D,K,w);
12
```

Scilab code bodedel.sci l

・ロン ・御ン ・ヨン ・ヨン

Scilab code bodedel.sci II

11

- ¹² subplot (2,1,1)
- 13 xgrid();
- 14 xtitle('Bode_plot','','G1_(dB)')
- plot2d(w,G1_mag+gain_mag,logflag ="ln",style = 1);

16

- $_{17}$ G1_ph = phasemag(G1_freq);
- 18 gain_ph = phasemag(gain_freq) delay*w*180/%pi;

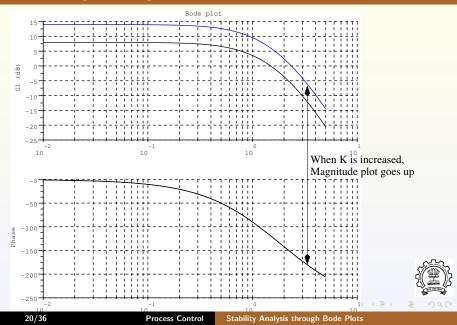
Scilab code bodedel.sci III

24 endfunction;

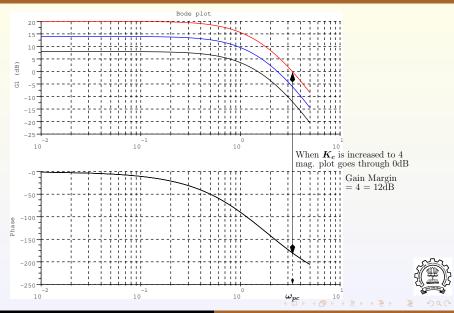
3. Gain margin and phase crossover frequency

・ロン ・回 と ・ ヨ と ・ ヨ と

Increasing the gain



Increasing the gain further



Process Control

Phase Crossover Frequency

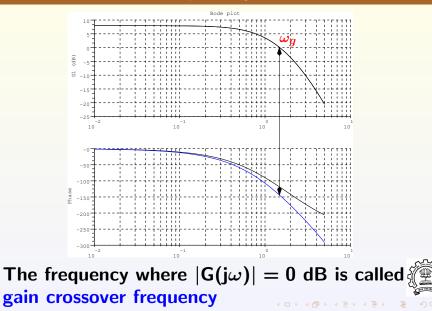
- The frequency ω at which $\angle G(j\omega) = -180^{\circ}$
- is called Phase Crossover Frequency
- It is denoted by $\omega_{\rm pc}$
- For That is, $\angle {\sf G}({\sf j}\omega_{\sf pc})=-180^\circ$
- Some people call it as simply crossover frequency, and denote it as ω_c

- Locate $\omega_{
 m c}$, where $\angle {\sf G}({\sf j}\omega_{
 m c})=-180^\circ$
- Find $|G(j\omega_c)|$ at that point
- ► Can increase gain of the system by K_c until K_c|G(jω_c)| = 1
- Can verify that we can increase K_c until 4
- ▶ Gain margin = 4 or 12 dB
- Draw the Bode plot and verify

3. Phase margin and gain crossover frequency

・ロト ・回ト ・ヨト ・ヨト

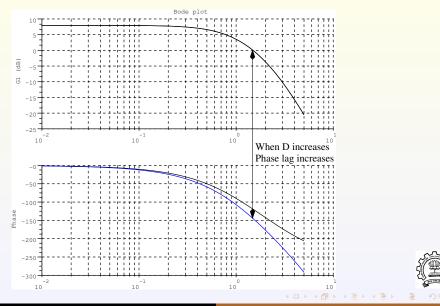
Gain Crossover Frequency



25/36

Process Control

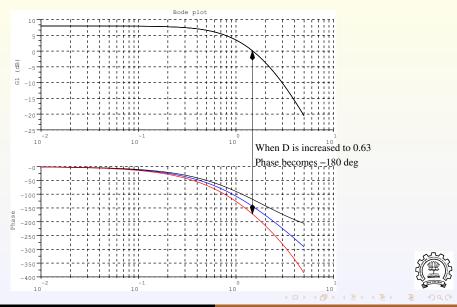
Increasing the delay



26/36

Process Control

Increasing the delay further



27/36

Process Control

Bode plot by changing delay

- Suppose G(s) changes to G₁(s) = G(s)e^{-Ds}
- What is D such that when $|G_1(j\omega)| = 1$, $\angle G_1(j\omega) = -180^{\circ}$?
- Call this ω as ω_g, or gain crossover frequency

Calculation of Delay

•
$$|G(j\omega_g)| = 1$$

• $G(s) = \frac{15}{(s+1)(s+2)(s+3)}$
• $(\omega_g^2 + 1)(\omega_g^2 + 4)(\omega_g^2 + 9) = 225$
• $\omega_g \simeq 1.57$
• $\phi(j\omega_g) = -\tan^{-1}(\omega_g/2) - \tan^{-1}(\omega_g/3)$
• $= -123.2^{\circ}$
• If delay contributes -56.8°
(= $180 - 123.2^{\circ}$), instability
• $D\omega_g = \frac{56.8}{180} \times \pi \Rightarrow D = 0.63$

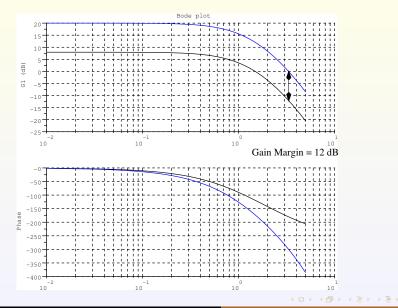
・ロン ・四 と ・ ヨ と ・ ヨ と

Can find ω_g = 1.57, approximately Can increase D to D = 0.63

This analysis is valid only for systems that have

- stable systems, with at most one pole on imaginary axis
- only one $\omega_{\rm c}$
- \blacktriangleright only one $\omega_{
 m g}$

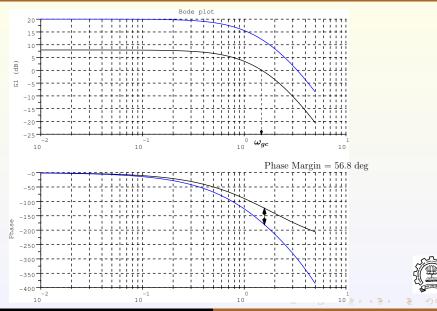
Gain margin



32/36

Process Control Stability Analysis through Bode Plots

Phase margin



Process Control Stability Analysis through Bode Plots

Stabilising through derivative mode

・ロン ・回 と ・ ヨ と ・ ヨ と

Stability conditions using Bode plotStability margins

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Thank you

