Lecture 26 Controller Design using Bode Plot

Process Control Prof. Kannan M. Moudgalya

IIT Bombay Tuesday, 1 October 2013

- 1. Stability analysis using Bode plot
- 2. Example problem
- 3. Solution to example problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1. Summary of Stability using Bode Plots

・ロン ・回 と ・ ヨン ・ ヨン

Stability conditions for Bode plots

- ► Root locus conditions on j ω are $|K_u G(j\omega)| = 1$, $∠K_u G(j\omega) = -180^\circ, \pm 540$, etc.
- Because it is the boundary of instability, we have used K_u
- $K_c > K_u \Rightarrow$ closed loop system unstable
- Can analyse stability using Bode plot
- Can check by how much we can move
 - magnitude plot by adding gain
 - phase plot by adding delay

Restrict focus to class of systems

- Restrict Bode plot analysis to a class of systems
- ▶ For K_c < K_u, system is stable
- \blacktriangleright For $K_c \geq K_u$, system is unstable

Find a proportional controller $K_{\rm c}$ that will make

$$G(s) = \frac{15}{(s+1)(s+2)(s+3)}$$

unstable, when put in a feedback loop.

Stability condition for example

► 1 + K_cG(s) = 0
1 +
$$\frac{15K_c}{(s+1)(s+2)(s+3)} = 0$$

► (s + 1)(s + 2)(s + 3) + 15K_c = 0
► s³ + 6s² + 11s + (15K_c + 6) = 0
► Cuts imaginary axis at K_c = 4

▶ Stable for K_c < 4

Example of Gain Margin

8/23

Process Control

Controller Design using Bode Plot

Example of Phase Margin

9/23

Process Control

Controller Design using Bode Plot

2. Example Problem

Want to use $K_c=10$ with this plant: $G(s)=\frac{15}{(s+1)(s+2)(s+3)} \label{eq:G}$

・ロン ・回 と ・ ヨ と ・ ヨ と …

- I want to use $K_{\rm c}=10$ because
 - 1. I can stabilise the system somehow
 - 2. It is a round number
 - 3. I want the steady state error to be small
- 4. This is done to illustrate a principle Answer: 3

Draw the root locus plot

$$\begin{split} \mathsf{G}(s) &= \frac{15}{(s+1)(s+2)(s+3)} \\ \mathsf{K}_{c} &= 10 \end{split}$$

Draw the Bode plot

$$\begin{split} \mathsf{G}(s) &= \frac{15}{(s+1)(s+2)(s+3)} \\ \mathsf{K}_{c} &= 10 \end{split}$$

・ロン ・回 と ・ ヨン ・ ヨン

3. Solution

Stabilised by increasing the phase at $\omega_{ m g}$

・ロン ・回 と ・ ヨ と ・ ヨ と …

MCQ: Adding Phase at ω_{g}

Phase can be added by

- 1. Including a derivative mode, as noise effects are generally negligible
- 2. Better to include a lead, as a pure derivative mode cannot be implemented
- 3. Phase cannot be added
- 4. Adding a phase cannot stabilise the system

Answer: 2

• Consider the lead transfer function: $G(s) = \frac{s+1}{0.01s+1}$

Magnitude Bode Plot

Phase Bode Plot

This analysis is valid only for systems that have

- stable systems, with at most one pole on imaginary axis
- only one $\omega_{\rm c}$
- \blacktriangleright only one $\omega_{
 m g}$

Solving a problem by trial and error

Thank you

・ロン ・回 と ・ ヨン ・ ヨン