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1. Recap of discrete time control basics
2. Deriving the system matrix for DMC
3. Dynamic Matrix Control law

2/25 Process Control Dynamic Matrix Control



1. Recap of discrete time control basics
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Impulse Response Models for LTI Systems

» Recall impulse response:

{0(n)} | Time Invariant | {9(7)}

—e e
System

» Shift the input. As time invariant, output will
also be shifted:

{0(n = k)} | Time Invariant ‘ {g(n —k)}
| System

> {u(n)} = s u(k){d(n —k)}
» {y(n)} =22 _u(k){e(n — k)}

» As before, use convolution operator, x*:

{y(n)} = {U(")} {g(n)}
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Importance of Impulse Response Models

(e o]

{y(m} = > u(k){e(n —k)}

k=—oc0

{u(n)} * {g(n)}

» Impulse response has all information about LTI
system

» Given impulse response, can determine outpu
due to any arbitrary input =

Dynamic Matrix Control



Step Response, Impulse Response

The unit step response of an LTI system at zero
initial state {s(n)} is the output when

{u(n)} = {1(n)}:
{s()}= > 1(k){g(n—k)}

k=—oc
Apply the meaning of 1(k):
= {e(n—k)}
k=0

» This shows that the step response is the sumJof
impulse response.
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Relation between Step and Impulse

Responses

» We can also get impulse response from step
response.

Dynamic Matrix Control



Relation between Step and Impulse Signals

{1(n)} {6(n)}

1 ® ® ® ® ® 1

I
T

n=~0 n — n=~0 n—




Relation: Step and Impulse Responses

» We can also get impulse response from step
response.

> {6(n)} = {1(n)} — {1(n - 1)}
» Using linearity and time invariance properties,
~ {g(n)} = {s(n)} — {s(n — 1)} = A{s(n)}
» Can show that
{y(n)} = [{u(n)} — {u(n —1)}] * {s(n)}
» This can be written as
{y(n)} = {Au(n)} « {s(n)}
» Compare: {y(n)} = {u(n)} * {g(n)}




Superposition Principle

> Output y =y, + yx

Sum of output due to input only and output due to
nonzero initial condition only.
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2. Deriving the system matrix for DMC
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DMC Modelling

» Let s(0) = 0, and a bias term b; it is for
modelling errors, noise, etc. Don’t know b

» y(k+1) = yi(k + 1) + s(1)Au(k) + b(k + 1)

> 9(k +2) = yx(k + 2) + 5(2) Au(k)
+s(1)Au(k + 1) + b(k + 2)

» §(k+Ny+1) = yo(k+ Ny +1) +s(N, +1)Au(k)
+---+s(1)Au(k + N,) + b(k + N, + 1)
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DMC Modelling, continued

» y(k+Ny,+1) = yu(k+N,+1)+s(N,+1)Au(k)
+---+s(1)Au(k + N,) + b(k + N, + 1)

» N, is control horizon, i.e., we apply control
effort up to k + N, and keep it constant
afterwards

> i.e., Au(k + m) =0, for all m > N,

» §(k+ Ny +2) = yx(k+ Ny +2) +5(Ny +2) Au(k)
+---+5s(2)Au(k + Ny) + b(k + N, + 2)
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DMC Modelling, continued

» §(k+Ny+2) = yx(k+ Ny +2) +s(Ny +2) Au(k)
4.« +5s(2)Au(k + N,) + b(k + N, + 2)

» ¥(k + N) = y,(k + N) 4+ s(N)Au(k)
+s(N —1)Au(k +1) + - -
+s(N — N,)Au(k + N,) + b(k + N)
» Stacking these up,

» y(k+1) =y (k+1) +su(k) +b(k +1)
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Definition of variables

Tk +1)° yulk + 1)

gk +1) = 9(k:+2) v (k1) = yx(k:+ 2)
9(k + N) yol(k + N)
"b(k 4+ 1) ]

b(k + 1) = b(k.—|—2)
b(k + N),
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Definition of variables: system matrix

[ s(1) 0
s(2) s(1) 0
s = s(Iilu) s(N, —1) s(N,—2) --- 0

s(N,+1) s(N,) s(N,—1) .- s(1)

s(N) s(N—1) s(N—2) --- s(N—N,)

The variable s has N rows and N, + 1 columns, N > N,
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Definition of variables: control effort

Au(k)
u(k) = Au(kE + 1)
Au(k + N,)

u has N, + 1 rows
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Develop the system matrix for N =5, N, = 3
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3. Dynamic matrix control law
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Solution to DMC model

sr(k+1) = [r(k+1) r(k+2) --- r(k+N)]"

> Letting § = r, we obtain,

>y (k+1) +su(k) +b(k+1) =r(k+1)

» By rearranging the terms, we require

- su(k) = [r(k+1) =y (k+1) —b(k + 1) =0

» Defining the terms within square brackets as
e(k +1),

»su(k) —e(k+1)=0

» Least squares solution:

+ u(k) = (s"s)'s"e(k + 1)

=
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DMC: control law

> u(k) = (s"s)'sTe(k + 1)

» In order that excessive control action is not
applied, the following method of control action
calculation is done:

-1
» u(k) = [s"s + p?l] " sTe(k + 1)
» We determine the current bias and assume that
it is constant for the rest of the control moves

» In other words, we let
b(k+ 1) =y(k) —y(k), i=1,2,...,N, where
y is the measured value of output.
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Receding Horizon Control

» Implement only the first control law
» Repeat the calculations for every control move

» Calculate the bias term for every interval, using
the latest measured y value
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Reference for Digital Control:

K. M. Moudgalya, Digital Control, Wiley,
Chichester, 2007

Also, New Delhi, 2009
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What we learnt today

» Recap of discrete time model
» DMC model
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Thank you
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