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Second Order Models and Response



1. Poles, zeros, response for different pole
locations
2. Solution to second order systems

3. Integrating/capacitive systems

o
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1. Poles, zeros, response for different pole
locations




Transfer function terminologies

» Let the transfer function be G(s) = N(s)/D(s)
where N(s) and D(s) are polynomials in s

» The roots of N(s) = 0 are called zeros of G(s)
» The roots of D(s) = 0 are called poles of G(s)




Transfer Function

The a; in the following transfer function are known
as

(s—a1)---(s —am)
(s—by):---(s—by)

G(s) =

1. Poles
2. Zeros
3. Gain
4. Time constants
Answer: 2. Zeros
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Transfer Function

The b; in the following transfer function are known
as

(s—a1):---(s—am)
(s—by):---(s—by)

G(s) =

1. Poles
2. Zeros
3. Gain
4. Time constants
Answer: 1. Poles

econd Order Model



Poles and zeros of two transfer functions

» Let the transfer function be G(s) = N(s)/D(s)
where N(s) and D(s) are polynomials in s
» The poles of 1 + KG(s) are

1. same as the poles of G(s)

2. same as the zeros of G(s)

3. No relation between the poles/zeros of G(s) and
1 + KG(s)

Answer: 1. same as the poles of G(s)
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Poles and zeros of two transfer functions

» Let the transfer function be G(s) = N(s)/D(s)
where N(s) and D(s) are polynomials in s

» Let the closed loop transfer function be T(s):

KG(s)

T(s) = ———
) = T ka(s)
» The poles of T(s) are
1. Poles of G(s)
2. Zeros of G(s)
3. Zeros of D(s) + KN(s)

4. Poles of D(s) + KN(s)
Answer: 3. Zeros of D(s) + KN(s)
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Partial fraction of second order system

K M A B C

>Y —_— _ = J—
(<) s2 + 2Cwns + w? s s+a+s+b+s

Given that y(t) is the output of a real life plant,
and a is complex,

1. There is no relationship between a and b

2. b is real

3.a=—b

4. a and b are complex conjugates
Answer: 4, i.e. a and b are complex conjugates

If a and b are not complex conjugates, @
y(t) will be imaginary, not realistic for a real plantf™
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Partial fraction of second order system

K M A B C

>Y —_— _ = J—
(<) s2 + 2Cwns + w? s s+a+s+b+s

Given that y(t) is the output of a real life plant,
and A is complex,
1. There is no relationship between A and B
2. B is real
3. A= —B
4. A and B are complex conjugates
Answer: 4, i.e. A and B are complex conjugates

If A and B are not complex conjugates,
y(t) will be imaginary, not realistic for a real plantf™
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Response for different pole locations

“d

Poles are indicated by crosses
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Step response for pole at a

» For the pole at a
place indicated by a,
the response is of the
form e~ 't

» The exponential part
will decay, reaching g
constant value
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Scilab code to plot step response of a

negative pole, a.sce

s = %s

Ga=1/(s+3)

t = 1:0.1:5;

y a = csim(’step’,t,G a);
plot2d(t,y_a)




Response for pole at b

» For the pole at a
place indicated by b,
the response is of the
form et

» The exponential part
will grow unboundegd
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Scilab code to plot step response of a

positive pole, b.sce

s = %s
G b = 1/(5—2)
t = 0:0.01:6;
y b = csim(’step’,t,G Db);
plot2d(t,y_b)




Response for pole at ¢

“C

» For the poles at
) places indicated by c,
¢ the response is of the

form et x (sinusoidal
terms)

» There will be growing
oscillations
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Scilab code to plot step response of

complex conjugate poles in right half
plane, c.sce

= %s

c = 1/(s—(142+«%i)) /(s—(1—2x%i))
= 0:0.01:10.15;

¢ = csim(’'step’,t,G c);
ot2d(t y _c)
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Response for poles at d

» For the poles at
places indicated by d,
the response is of the
form
et x (sinusoidal
terms)

» There will be
decaying oscillations
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Scilab code to plot step response of

complex conjugate poles in left half plane,

s = %s
Gd = 1/(s—(—14+3+x%i) ) /(s —(—1-3x%i) )
t = 0:0.01:6;

y d = csim(’'step’,t,G d);

plot 2d(t y d)




2. Second order system




Second order system

K
7282 4+ 2¢1s + 1

v

Y(s) = G(s)U(s), G(s) =

T is the time constant

v

v

¢ is the damping coefficient

v

K is the steady state gain
K M

7282 4+ 2(7s + ls

v

Step response: Y(s) =
A B C

> = J—

s+ a s+b s
Is there a relation between a and b, A and B?

For ( <1, a=Db* A=DB"

v

v




Step response of a second order system

Y(s) = K M = A St 5 +E

7282 +2(1s+1s s+a s+b s
a and b are roots of 72s> + 2¢(1s+1=0
—2(T £ \/4¢272 — 412

272
- feley

’CZI a, barereal
» ¢ <1, complex, a = b*, A = B*

v

v

> a,b:

v
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Step response for ( > 1

K M
7282+ 2¢(ts+1s

Y(s) =

> Known as an overdamped system (¢ > 1)
» Its solution is given by

y(t) = KM {1 — e(=¢t/7)y

¢2—1 ¢ . VE§E—1
[COSh <—t> + \/ﬁﬂnh (712) P




Step response for { = 1

K M
22 +2(ts+1s

Y(S) =

» Known as critically damped system ({ = 1)
» Its solution is given by

v = kM [1— (145 ) ]

T




Step response for ( < 1

K M

Y = —
(<) 7282+ 2¢(1s+1s

» Known as underdamped system (¢ < 1)
» Its solution is given by

y(t) = KM {1 — et/

(52 (T2




Another form of |l order system

K
7282 4+ 2¢T1s + 1

will also be written as

G(s) =

w2

G = n
(s) s2 + 2¢wps + w?

» K is taken as 1

» wpn: natural frequency, ¢: damping factor.

» For different ¢, get underdamped ({ < 1),
critically damped (¢ = 1) and
overdamped (¢ > 1) systems
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You should be able to derive all the

previous expressions for y(t)




Solution to underdamped system

Underdamped second order system:

w2

G = n
(s) s2 + 2¢wps + w?

For ¢ < 1, rts of den. = —Cw,, & jwn/1 — (2

The step response is,

y(t) =1

e — sm wnyV'1— C2t + tan™ —IC_Cz




Step response of underdamped system




Scilab code step-ll-order.sce

exec( 'second.sci’);
s = %s
omegan = 1; t = 1:0.1:15;

y = second (omegan,0.1,t);

y = second (omegan,0.5,t);

y = second (omegan,l,t);

y = second (omegan,2,t);

function y = second(omegan, zeta , t)

G = omegan”"2/(s"2+2xzetaxomeganks+
omegan " 2)

y = csim(’'step’,t,G);
plot2d(t,y)

’ o=
endfunction
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3. Integrating/capacitive systems




Integrating Process

Qi(t)

B

1}

h(t)

dh

A— =Q; —
it Q—Q

In deviational variables,
dAh

Taking Laplace transform,
AsAh(s) = AQ;i(s) — AQ(s)
Ah(s) =

2 AQ(s) — -AQ(s)
As ' As




Integrating Process

Qi(t)

B

’

h(t)

34/39
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In case of a step distur-
bance in feed flow, tank
will

1. overflow

2. run dry

3. overflow or run dry

4. stabilise at some

suitable value

Answer: 3: overflow or
run dry
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Ramp input to a first order system

Y(s) =

a
p— 1U(s), U(s) = 2 + at

T e K a A B C
g v Ry g
» Multiply by 7s + 1, let s = —1/7, A = Kar?
» Multiply by s
Ka
s+ 1 T Ts +1
» By letting s = 0, C = Ka
» Differentiating blue equation w.r.t. s
» and letting s = 0, B = —Kar

s24+Bs+ C




Final value of ramp input to a first order

v

v

v

v

v

v

)= o4
s+1 s 2
Y(s) = Kat2 _ Kar N Ka
s + 1 s s2
Inverting

y(t) = Kar (e7%/7 — 1) + Kat
y(t = 00) = Ka(t — 7)

Let K =1 and plot u(t) and y(t) in the same
plot e




Rectangular Pulse

M

» Give the following input, u(t): ¢
»u(t) =1t) x M —-1(t—t1) X M
» 1(t) denotes unit step input
»u(t) =[1(t) —1(t —t1)] x M

o= [L- L]

S

0 t=

[y

CUGs) = [1— et Y




What we learnt today

» Poles, zeros, response of systems for different
pole locations
» Solution to second order systems

» Integrating or capacitive systems

o
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Thank you
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