
Lecture 6
Modelling Second Order Systems

and Examples

Process Control
Prof. Kannan M. Moudgalya

IIT Bombay
Wednesday, 31 July 2013

1/39 Process Control Second Order Models and Response



Outline

1. Poles, zeros, response for different pole
locations
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1. Poles, zeros, response for different pole
locations
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Transfer function terminologies

I Let the transfer function be G(s) = N(s)/D(s)
where N(s) and D(s) are polynomials in s

I The roots of N(s) = 0 are called zeros of G(s)

I The roots of D(s) = 0 are called poles of G(s)
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Transfer Function

The ai in the following transfer function are known
as

G(s) =
(s− a1) · · · (s− am)

(s− b1) · · · (s− bn)

1. Poles

2. Zeros

3. Gain

4. Time constants

Answer: 2. Zeros
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Transfer Function

The bj in the following transfer function are known
as

G(s) =
(s− a1) · · · (s− am)

(s− b1) · · · (s− bn)

1. Poles

2. Zeros

3. Gain

4. Time constants

Answer: 1. Poles
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Poles and zeros of two transfer functions

I Let the transfer function be G(s) = N(s)/D(s)
where N(s) and D(s) are polynomials in s

I The poles of 1 + KG(s) are
1. same as the poles of G(s)
2. same as the zeros of G(s)
3. No relation between the poles/zeros of G(s) and

1 + KG(s)

Answer: 1. same as the poles of G(s)
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Poles and zeros of two transfer functions

I Let the transfer function be G(s) = N(s)/D(s)
where N(s) and D(s) are polynomials in s

I Let the closed loop transfer function be T(s):

T(s) =
KG(s)

1 + KG(s)

I The poles of T(s) are
1. Poles of G(s)
2. Zeros of G(s)
3. Zeros of D(s) + KN(s)
4. Poles of D(s) + KN(s)

Answer: 3. Zeros of D(s) + KN(s)
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Partial fraction of second order system

I Y(s) =
K

s2 + 2ζωns + ω2
n

M

s
=

A

s + a
+

B

s + b
+

C

s

Given that y(t) is the output of a real life plant,
and a is complex,

1. There is no relationship between a and b

2. b is real

3. a = −b

4. a and b are complex conjugates

Answer: 4, i.e. a and b are complex conjugates
If a and b are not complex conjugates,
y(t) will be imaginary, not realistic for a real plant!
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Partial fraction of second order system

I Y(s) =
K

s2 + 2ζωns + ω2
n

M

s
=

A

s + a
+

B

s + b
+

C

s

Given that y(t) is the output of a real life plant,
and A is complex,

1. There is no relationship between A and B

2. B is real

3. A = −B

4. A and B are complex conjugates

Answer: 4, i.e. A and B are complex conjugates
If A and B are not complex conjugates,
y(t) will be imaginary, not realistic for a real plant!
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Response for different pole locations

a

d

d

c

c

b

Poles are indicated by crosses
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Step response for pole at a

a

I For the pole at a
place indicated by a,
the response is of the
form e−α

2t

I The exponential part
will decay, reaching a
constant value
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Scilab code to plot step response of a
negative pole, a.sce

1 s = %s
2 G a = 1/( s +3)
3 t = 1 : 0 . 1 : 5 ;
4 y a = cs im ( ’ s t e p ’ , t , G a ) ;
5 p l o t 2 d ( t , y a )
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Response for pole at b

b
I For the pole at a

place indicated by b,
the response is of the
form eβ

2t

I The exponential part
will grow unbounded
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Scilab code to plot step response of a
positive pole, b.sce

1 s = %s
2 G b = 1/( s−2)
3 t = 0 : 0 . 0 1 : 6 ;
4 y b = cs im ( ’ s t e p ’ , t , G b ) ;
5 p l o t 2 d ( t , y b )
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Response for pole at c

c

c

I For the poles at
places indicated by c,
the response is of the
form eγ

2t×(sinusoidal
terms)

I There will be growing
oscillations
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Scilab code to plot step response of
complex conjugate poles in right half
plane, c.sce

1 s = %s
2 G c = 1/( s−(1+2∗%i ) ) /( s−(1−2∗%i ) )
3 t = 0 : 0 . 0 1 : 1 0 . 1 5 ;
4 y c = cs im ( ’ s t e p ’ , t , G c ) ;
5 p l o t 2 d ( t , y c )
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Response for poles at d

d

d

I For the poles at
places indicated by d,
the response is of the
form
e−δ

2t×(sinusoidal
terms)

I There will be
decaying oscillations
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Scilab code to plot step response of
complex conjugate poles in left half plane,
d.sce

1 s = %s
2 G d = 1/( s−(−1+3∗%i ) ) /( s−(−1−3∗%i ) )
3 t = 0 : 0 . 0 1 : 6 ;
4 y d = cs im ( ’ s t e p ’ , t , G d ) ;
5 p l o t 2 d ( t , y d )
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2. Second order system
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Second order system

I Y(s) = G(s)U(s), G(s) =
K

τ 2s2 + 2ζτ s + 1
I τ is the time constant

I ζ is the damping coefficient

I K is the steady state gain

I Step response: Y(s) =
K

τ 2s2 + 2ζτ s + 1

M

s

I =
A

s + a
+

B

s + b
+

C

s
I Is there a relation between a and b, A and B?

I For ζ < 1, a = b∗, A = B∗
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Step response of a second order system

I Y(s) =
K

τ 2s2 + 2ζτ s + 1

M

s
=

A

s + a
+

B

s + b
+

C

s
I a and b are roots of τ 2s2 + 2ζτ s + 1 = 0

I a, b =
−2ζτ ±

√
4ζ2τ 2 − 4τ 2

2τ 2

I = −
ζ

τ
±

1

τ

√
ζ2 − 1

I ζ ≥ 1, a, b are real

I ζ < 1, complex, a = b∗, A = B∗
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Step response for ζ > 1

Y(s) =
K

τ 2s2 + 2ζτ s + 1

M

s

I Known as an overdamped system (ζ > 1)

I Its solution is given by

y(t) = KM
{

1− e(−ζt/τ )∗[
cosh

(√
ζ2 − 1

τ
t

)
+

ζ√
ζ2 − 1

sinh

(√
ζ2 − 1

τ
t

)]
}
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Step response for ζ = 1

Y(s) =
K

τ 2s2 + 2ζτ s + 1

M

s

I Known as critically damped system (ζ = 1)

I Its solution is given by

y(t) = KM

[
1−

(
1 +

t

τ

)
e−t/τ

]
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Step response for ζ < 1

Y(s) =
K

τ 2s2 + 2ζτ s + 1

M

s

I Known as underdamped system (ζ < 1)
I Its solution is given by

y(t) = KM
{

1− e(−ζt/τ )∗[
cos

(√
1− ζ2

τ
t

)
+

ζ√
1− ζ2

sin

(√
1− ζ2

τ
t

)]
}
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Another form of II order system

G(s) =
K

τ 2s2 + 2ζτ s + 1

will also be written as

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

I K is taken as 1
I ωn: natural frequency, ζ: damping factor.
I For different ζ, get underdamped (ζ < 1),

critically damped (ζ = 1) and
overdamped (ζ > 1) systems
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You should be able to derive all the
previous expressions for y(t)
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Solution to underdamped system

Underdamped second order system:

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

For ζ < 1, rts of den. = −ζωn ± jωn

√
1− ζ2

The step response is,

y(t) = 1

−
e−ζωnt√
1− ζ2

sin

[
ωn

√
1− ζ2t + tan−1

√
1− ζ2

ζ

]
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Step response of underdamped system

y(t)

tr tp ts

Mp
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Scilab code step-II-order.sce
1 exec ( ’ second . s c i ’ ) ;
2 s = %s
3 omegan = 1 ; t = 1 : 0 . 1 : 1 5 ;
4 y = second ( omegan , 0 . 1 , t ) ;
5 y = second ( omegan , 0 . 5 , t ) ;
6 y = second ( omegan , 1 , t ) ;
7 y = second ( omegan , 2 , t ) ;

1 f u n c t i o n y = second ( omegan , zeta , t )
2 G = omegan ˆ2/( s ˆ2+2∗ z e t a ∗omegan∗ s+

omegan ˆ2)
3 y = cs im ( ’ s t e p ’ , t , G) ;
4 p l o t 2 d ( t , y )
5 e n d f u n c t i o n
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3. Integrating/capacitive systems
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Integrating Process

Q

Qi(t)

h(t)

I A
dh

dt
= Qi − Q

I In deviational variables,

I A
d∆h

dt
= ∆Qi(t)−∆Q(t)

I Taking Laplace transform,
As∆h(s) = ∆Qi(s)−∆Q(s)

I ∆h(s) =
1

As
∆Qi(s)−

1

As
∆Q(s)

33/39 Process Control Second Order Models and Response



Integrating Process

Q

Qi(t)

h(t)

In case of a step distur-
bance in feed flow, tank
will

1. overflow

2. run dry

3. overflow or run dry

4. stabilise at some
suitable value

Answer: 3: overflow or
run dry
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Ramp input to a first order system

Y(s) =
K

τ s + 1
U(s), U(s) =

a

s2
↔ at

I Y(s) =
K

τ s + 1

a

s2
=

A

τ s + 1
+

B

s
+

C

s2

I Multiply by τ s + 1, let s = −1/τ , A = Kaτ 2

I Multiply by s2:

I
Ka

τ s + 1
=

A

τ s + 1
s2 + Bs + C

I By letting s = 0, C = Ka

I Differentiating blue equation w.r.t. s

I and letting s = 0, B = −Kaτ
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Final value of ramp input to a first order
system

I Y(s) =
A

τ s + 1
+

B

s
+

C

s2

I Y(s) =
Kaτ 2

τ s + 1
−

Kaτ

s
+

Ka

s2

I Inverting

I y(t) = Kaτ
(
e−t/τ − 1

)
+ Kat

I y(t =∞) = Ka(t− τ )

I Let K = 1 and plot u(t) and y(t) in the same
plot
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Rectangular Pulse

I Give the following input, u(t):

M

t = 0 t = t1

I u(t) = 1(t)×M− 1(t− t1)×M

I 1(t) denotes unit step input

I u(t) = [1(t)− 1(t− t1)]×M

I U(s) =

[
1

s
−

1

s
e−t1s

]
M

I U(s) = [1− e−t1s]
M

s
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What we learnt today

I Poles, zeros, response of systems for different
pole locations

I Solution to second order systems

I Integrating or capacitive systems
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Thank you
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