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Review of Lecture 4: Euler Lagrange Equation

We discussed application of the Euler Lagrange Equation to solve the
Brachistochrone problem.

Brachistochrone is the path for which the time for a bead to slide
along a vertical track from a given point to another for which the
time taken is the shortest.

By minimising a quantity similar to action, we minimised the time
taken and found the shape of the path is part of a cycloid.

Today we will solve the spring pendulum problem using the E-L
equations and then have a re-look at the E-L equations using the
principle of virtual work.

Dipan Ghosh (I.I.T. Bombay) Class. Mech. -5 August 1, 2014 1 / 13



Spring Pendulum

T =
1

2
m[ẋ2 + (l + x)2θ̇2]

V = −mg(l + x) cos θ +
1

2
kx2 L = T − V
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Spring Pendulum

Take x and θ to be generalized coordinates.

E-L equation for x

mẍ = m(l + x)θ̇2 + mg cos θ − kx

First term centripetal acceleration term , second the component of
mg along the spring, −kx spring force. In a rotating frame of
reference, the first term is the centrifugal force term.

Dipan Ghosh (I.I.T. Bombay) Class. Mech. -5 August 1, 2014 3 / 13



Spring Pendulum

E-L equation for θ

d

dt
[m(l + x)2θ̇] = −mg(l + x) sin θ

on the right is the torque about the point of suspension. L.h.s. gives
the rate of change of angular momentum

L = m~r × ~v = m(l + x) · (l + x)θ̇ = m(l + x)2θ̇

Explicitly differentiating, we have

m(l + x)θ̈ + 2mẋ θ̇ = −mg sin θ

In a rotating frame it is the expression for the tangential acceleration
term, the second term representing the Coriolis force.
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Constraints

Consider a system described by generalized coordinates q1, q2, . . . , qm,
which may not all be independent because of constraints.

Holonomic Constraints are those where algebraic relationship (s)
exists between the coordinates. If there are k constraints, there are k
equations of the type

f i (t, 1, q1, q2, . . . , qm) = 0, 1 ≤ i ≤ k

Constraints are called Scleronomic if there is no explicit time
dependence.

Time dependent constraints are called Rheonomic.
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Constraints

Constraints which are not expressed as algebraic relations but are
expressed as differential equations which constrain the generalized
coordinates and velocities are called kinematic constraints.

Non-integrable kinematic constraints cannot be reduced to holonomic
constraints and are called Non-Holonomic.
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Holonomic Constraints

Two masses connected by pulleys. Two particles =⇒ 6 degrees of
freedom.

m1 moves only along x and m2 only along y direction, making the dof
as 2, as y1 = z1 = 0 and x2 = y2 = 0.

If m1 moves to right by d , m2 moves downwards by 2d , one
constraint. The problem is one dimensional.
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Non-Holonomic Constraints

Relationship expressed as algebraic inequality e.g. A mass moving
inside a sphere x2 + y2 + z2 ≤ 0.

Disc rolling without slipping on horizontal x − y plane, keeping its
own plane vertical.

Four degrees of freedom: position (x , y) of the centre of mass, φ by
which the disk has rotated about its axis of rotation and the angle θ
that the axis makes with the x-axis.
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Non-Holonomic Constraints- Rolling Disc

The axis makes θ with x-axis, so linear velocity v of the disk makes θ
with y axis

dx

dt
= v sin θ = Rω sin θ = Rφ̇ sin θ

dy

dt
= −v cos θ = −Rφ̇ cos θ

Combining dx = R sin θdφ and dy = −r cos θdφ. These equations
cannot be reduced further.
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Virtual Displacement

A displacement of the system (probably imagined) consistent with the
constraints on the system

Displacements are instantaneous as no velocities are involved but the
new configuration arrived at is a possible geometrical state of the
system.

If the system is in equilibrium, force ~Fi acting on each particle is zero.
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Principle of Virtual Work

The work done by applied forces in a virtual displacement of a body is
zero.

A displacement of the system (probably imagined) consistent with the
constraints on the system

Displacements are instantaneous as no velocities are involved but the
new configuration arrived at is a possible geometrical state of the
system.
~Fi = 0 =⇒

∑
i
~Fi · δ~ri = 0
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Principle of Virtual Work

The work done by applied forces in a virtual displacement of a body is
zero.

~Fi = 0 =⇒
∑

i
~Fi · δ~ri = 0

Fi = F a
i + F c

i but the constraint forces (reaction, tension etc.) do not
do any work.

Thus
∑

i
~F a
i · δri = 0
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