V-n Diagram by Dr. Rahul Goel UG Aero 2004-8

Winter Intern Dec 2004



Research Assistant, University of Houston

**AE 705 Introduction to Flight** 

Lecture No 16



Lecture No 16



Lecture No 16

## A Brief Introduction to

# **V-N Diagram**

#### Prof. Rajkumar S. Pant Aerospace Engineering Department IIT Bombay

**AE 705 Introduction to Flight** 

Lecture No 16



- V-N diagram definition
- a/c Load factors
- Upper limit of load factors
- Corner speed
- Operational V-N diagram
- Gust Loading
- FAR 23 standard for Gust velocity
- Limit combined Envelope







Lecture No 16

Capsule-08

<u>Next</u>

#### **Some General Points**

V-N diagram is applicable only for symmetrical maneuvers in the vertical planes. Why?

Because N<sub>z</sub> has the highest numerical value and in symmetrical maneuvers in vertical plane N<sub>x</sub> & N<sub>y</sub> remain constant.

V-N diagram is drawn only for N<sub>z</sub>. Why?

Because the numerical values of  $N_x$ ,  $N_y$  are small and can't lead to structural damage to a/c if they are too high.

It can be seen that N<sub>z</sub>  $\alpha$  V<sup>2</sup> and (AOA) How?



**AE 705 Introduction to Flight** 



But this would imply that we need to draw a different V-N diagram for every possible altitude.

So how do we eliminate this problem?

Back to general Capsu**be N**ets

AE 705 Introduction to Flight

Equivalent Airspeed is used in calculations instead of True airspeed as found by <u>Pitot-Static tube</u>

- The velocity (True Airspeed [TAS]) indicated by the Airspeed Indicator is proportional to dynamic pressure
- Taking into account the errors in calibrated instruments we get the calibrated airspeed [CAS].
- And after taking into considerations the compressibility effects we get Equivalent airspeed [EAS] (so it is that speed at which the a/c would be flying at sea level under same conditions of pressure and temp.)
- By using this equivalent speed the variable ' $\rho$ ' can be eliminated
- So  $N_z$   $\alpha$  AOA

 $\alpha V_{eq}^2$ 

**AE 705 Introduction to Flight** 

Lecture No 16

**ONLY** 

Capsule-08

Back

# Factors that governs the upper limit of N<sub>z</sub>

- Structural strength of a/c
  - high  $N_z$  means designing the aircraft structure to bear higher loads
- Safety and Comfort of Passengers and Pilot

See this <u>TABLE</u>

Capsule-08

**AE 705 Introduction to Flight** 

### **Typical Limit Load Factors**

| Aircraft Type                   | N(positive) | N(Negative) |
|---------------------------------|-------------|-------------|
| General Aviation-normal         | 2.5 to 3.8  | -1 to -1.5  |
| General Aviation-utility        | 4.4         | -1.8        |
| General Aviation-<br>aerobatics | 6           | -3          |
| Homebuilt                       | 5           | -2          |
| Transport                       | 3 to 4      | -1 to -2    |
| Strategic Bomber                | 3           | -1          |
| Tactical bomber                 | 4           | -2          |
| Fighter                         | 6.5 to 9    | -3 to -6    |

Observe:- N(negative) is almost half of N(positive).AE 705 Introduction to FlightLecture No 16







Point A in the graph is important because it corresponds to highest N<sub>z</sub> permissible, and also the max. lift coefficient of a/c.

Implications:-

- 1. It leads to smallest turn radius (tightest turn)
- 2. And Fastest turn rate

The speed corresponding to this a/c is called the Design Manoeuvre speed or Corner speed







Certain Areas are not operationally possible leading to this "Operational " V-N Diagram





Many airworthiness requirements suggest a cut in upper part of the V-N diag. as well From pt C to line DF because flight is not possible in these regions due to **limitations of power plant**  What happens when pilot exceeds the limits of load factor?



- Pilot can make the a/c fly in this region if enough engine control power is available
- But it could lead to structural damage as well as health problems to pilots and passengers.
- But during the Dive-Pull out Manoeuvre it is possible that pilot may exceed the N<sub>max</sub> prescribed at the lowest point of the dive that's why this manoeuvre is called "checked manoeuvre"







#### **Effect of Gusts**

**<u>Gusts</u>** are vertical draughts of air, they could be upwards or downwards

They impose additional vertical load factors in an aircraft.



The direction of relative wind is changed by  $\Delta \alpha$ 



**AE 705 Introduction to Flight** 

$$\Delta N_z = \frac{a_0 * V_{Eq} * \rho * V_G * S}{2 * W}$$

Where  $V_G =$  Vertical Gust  $a_0 =$  Slope of lift curve  $V_{Eq} =$  Equivalent Velocity

- If the a/c was in level flight than this additional load factor will add to the existing load factor of 1 (level flight)
- The graph of load factor will start from (0,1)
- The airworthiness authorities have specified certain values of gust velocities to be considered in V-N diagram depending on the type of a/c and the altitude of flight.



**AE 705 Introduction to Flight** 

## FAR 23 Standard for Gust Velocities



FAR 23 specifies a cosine distribution for the gust shape



 $k = \frac{0.88\mu}{5.3 + \mu}$ 

where C<sub>mean</sub> Mean Geometric Chord

The Gust Alleviation Factor 'K' is specified as follows:-

for subsonic a/c



The factor k is multiplied to  $V_G$  to give us the effective sharp gust velocity

**AE 705 Introduction to Flight** 



#### **Cosine distribution as per FAR 23 specification**



25

20

15

Vg ->in fps

This distribution is for  $V_c$  for altitude between 0-20000 ft.

**Back** 





#### **Limit Gust Line**

<u>Next</u>

