
23rd December, 2013

Probabilistic Graphical Models

Lecture 20

Ganesh Ramakrishnan

CS337, Artificial Intelligence and Machine Learning



December 23rd, 2013

Recap: Inferencing in Graphical Models
▪Exact inferencing

– Message passing
– Beam Search
– A* search
– Junction tree algorithms
– Integer Linear Programming based inferencing
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Exact Inferencing in Graphical Models
▪Why hard ? We saw
▪Message passing algorithm

– Applicable to tree-structured directed and 
undirected graphical models – illustration on 
HMM Part of Speech Tagging

▪(Extra & Optional) Junction Tree algorithm
– Applicable to arbitrary undirected graphs with 

cycles
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Message Passing algorithm: Broad Idea
▪ Example

▪ Find marginal for a particular node

– for M-state nodes, cost is 
– exponential in length of chain
– but, we can exploit 

1. the graphical structure (conditional independences)
2. Avoidance of redundant computations through dynamic 

programming

)( LMO
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Message Passing: Broad idea
▪Exchange sums and 

products

▪Express as product of 
messages (Z is obtained by 
normalization)
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Message Passing: Broad Idea
▪Recursively evaluate 

messages
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Max Product Algorithm: Broad Idea
▪Goal: find

▪Define

▪Then

▪Message passing algorithm with “sum” replaced by 
“max”

▪Generalization of Viterbi algorithm for HMMs
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Recap: Viterbi in HMM for POS



SP2­10

Summary of inference methods
Chain (online) Low treewidth High treewidth

Discrete BP = forwards
Boyen-Koller (ADF), 
beam search (BFS)
A* (DFS)

VarElim, Jtree, 
recursive
conditioning

Loopy BP, mean field, 
structured variational, 
EP, graphcuts
Gibbs

Gaussian BP = Kalman filter Jtree = sparse linear 
algebra

Loopy BP
Gibbs

Other EKF, UKF, moment 
matching (ADF)
Particle filter

EP, EM, VB, NBP, 
Gibbs

EP, variational EM, VB, 
NBP, Gibbs

Exact Deterministic approximation Stochastic approximation
BP=belief propagation, EP = expectation propagation, ADF = assumed density filtering, EKF = extended Kalman filter, UKF = unscented Kalman filter, VarElim = 
variable elimination, Jtree= junction tree, EM = expectation maximization, VB = variational Bayes, NBP = non­parametric BP
Slide Credit: Kevin Murphy
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Search Algorithms Illustrated

• Consider the problem of searching shortest 
path(s) from S (start) to G (goal).

• Refer:https://moodle.iitb.ac.in/pluginfile.php/270556/mod_resource/content/1/searchingOnGraphs.pdf



Depth First Search



Breadth First Search



Hill Climbing Search



Beam Search



Recap Beam Search for HMM POS



Heuristic Search
Suppose in addition to the standard search 

specification we also have a heuristic.  
A heuristic function maps a state 

onto an estimate of the cost to the 
goal from that state.

Can you think of examples of heuristics?
• Eucledian distance?
• Smallest of all outgoing edge weights at a node?
• Recap HMM: The highest emission probability 

Denote the heuristic by a function h(s) from states 
to a cost value.



Recap: A* Search: Optimistic Heuristic 
for HMM POS Taggiong

• Consider the words remaining
– Use Optimistic Heuristic: 

• Upper bound on score  (highest possible score)
– Optimistic heuristic for tagging: 

• Best Emission Prob



Recap: A* Search: Optimistic Heuristic 
for HMM POS Taggiong



Euclidian Heuristic
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Steepest Ascent Hill Climbing
Init-PriQueue(PQ)
Insert-PriQueue(PQ,START,h(START))
while (PQ is not empty and PQ does not contain a goal state)

(s , h ) := Pop-least(PQ)
foreach s’ in succs(s)
if s’ is not already in PQ and s’ never previously been visited

Insert-PriQueue(PQ,s’,h(s’))

___________________________________________________

• Steepest ascent hill climbing considers all possible 
extensions of the current path

• In contrast, the simple hill climbing algorithm expands only 
on that s’ in succs(s) that has least value of h(s’)



Steepest Ascent Hill Climbing
Init-PriQueue(PQ)
Insert-PriQueue(PQ,START,h(START))
while (PQ is not empty and PQ does not contain a goal state)

(s , h ) := Pop-least(PQ)
foreach s’ in succs(s)
if s’ is not already in PQ and s’ never previously been visited

Insert-PriQueue(PQ,s’,h(s’))

A few improvements to this algorithm can make things better

Algorithm Comp
lete

Optimal Time Space

BestFS Best First 
Search

Y N O(min(N,BLMAX)) O(min(N,BLMAX))



Steepest Ascent Hill Climbing can 
Look Stupid!

• Steepest Ascent Hill Climbing is clearly not 
guaranteed to find optimal

• Obvious question:  What can we do to 
avoid the stupid mistake?
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A* - The Basic Idea
• Steepest Ascent Hill Climbing: When you expand a node 

n, take each successor n' and place it on PriQueue with 
priority h(n')

• A*: When you expand a node n, take each successor n'
and place it on PriQueue with priority

(Cost of getting to n') + h(n') (1)

Let g(n) = Cost of getting to n (2)

and then define…

f(n) = g(n) + h(n) (3)



A* Looking Non-Stupid
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When should A* terminate?
Idea:  As soon as it generates a goal state?
Look at this example:
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Correct A* termination rule:
A* Terminates Only When a Goal State Is Popped 
from the Priority Queue
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A* revisiting states
Another question: What if A* revisits a state that was 
already expanded, and discovers a shorter path?
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In this example a state that 
had been expanded gets 
re-expanded.  How and 
why?
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A* revisiting states
What if A* visits a state that is already on the queue?
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In this example a state that had 
been on the queue and was 
waiting for expansion had its 
priority bumped up.  How and 
why?
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note that this h 
value has changed 
from previous 
page.



Slide 35

The A* Algorithm

• Priority queue PQ begins empty.
• V (= set of previously visited (state,f,backpointer)-triples) begins empty.
• Put S into PQ and V with priority f(s) = g(s) + h(s)
• Is PQ empty?

➢Yes? Sadly admit there’s no solution
➢No? Remove node with lowest f(n) from queue.  Call it n.
➢ If n is a goal, stop and report success.
➢ “expand” n : For each n' in successors(n)….

• Let f’ = g(n') + h(n') = g(n) + cost(n,n') + h(n')
• If n' not seen before, or n' previously expanded with 

f(n')>f’, or n' currently in PQ with f(n')>f’
• Then Place/promote n' on priority queue with priority f’

and update V to include (state=n', f ’, BackPtr=n).
• Else Ignore n'

use sneaky trick 
to compute g(n)

= h(s) because 
g(start) = 0



Is A* Guaranteed to Find the 
Optimal Path?
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Nope.  And this example shows why not.

h = 7



Admissible Heuristics
• Write h*(n) = the true minimal cost to goal 

from n.
• A heuristic h is admissible if

h(n) <= h*(n) for all states n.
• An admissible heuristic is guaranteed 

never to overestimate cost to goal.
• An admissible heuristic is optimistic.

A* with Admissible Heuristic 
Guarantees Optimal Path




