
23rd December, 2013

Probabilistic Graphical Models

Lecture 20

Ganesh Ramakrishnan

CS337, Artificial Intelligence and Machine Learning

December 23rd, 2013

Recap: Inferencing in Graphical Models
▪Exact inferencing

– Message passing
– Beam Search
– A* search
– Junction tree algorithms
– Integer Linear Programming based inferencing

CS337, Artificial Intelligence and Machine Learning

December 23rd, 2013

Exact Inferencing in Graphical Models
▪Why hard ? We saw
▪Message passing algorithm

– Applicable to tree-structured directed and
undirected graphical models – illustration on
HMM Part of Speech Tagging

▪(Extra & Optional) Junction Tree algorithm
– Applicable to arbitrary undirected graphs with

cycles

CS337, Artificial Intelligence and Machine Learning

December 23rd, 2013

Message Passing algorithm: Broad Idea
▪ Example

▪ Find marginal for a particular node

– for M-state nodes, cost is
– exponential in length of chain
– but, we can exploit

1. the graphical structure (conditional independences)
2. Avoidance of redundant computations through dynamic

programming

)(LMO

CS337, Artificial Intelligence and Machine Learning

𝑝 𝑥𝑖 =

𝑥1

𝑥2

…… . .

𝑥𝑖−1

𝑥𝑖+1

……

𝑥𝐿

𝑝(𝑥1, 𝑥2… 𝑥𝐿)

𝑥𝑖

December 23rd, 2013

Message Passing: Broad idea
▪Exchange sums and

products

▪Express as product of
messages (Z is obtained by
normalization)

CS337, Artificial Intelligence and Machine Learning

December 23rd, 2013

Message Passing: Broad Idea
▪Recursively evaluate

messages

CS337, Artificial Intelligence and Machine Learning

December 23rd, 2013

Max Product Algorithm: Broad Idea
▪Goal: find

▪Define

▪Then

▪Message passing algorithm with “sum” replaced by
“max”

▪Generalization of Viterbi algorithm for HMMs

CS337, Artificial Intelligence and Machine Learning

Recap: Viterbi in HMM for POS

SP210

Summary of inference methods
Chain (online) Low treewidth High treewidth

Discrete BP = forwards
Boyen-Koller (ADF),
beam search (BFS)
A* (DFS)

VarElim, Jtree,
recursive
conditioning

Loopy BP, mean field,
structured variational,
EP, graphcuts
Gibbs

Gaussian BP = Kalman filter Jtree = sparse linear
algebra

Loopy BP
Gibbs

Other EKF, UKF, moment
matching (ADF)
Particle filter

EP, EM, VB, NBP,
Gibbs

EP, variational EM, VB,
NBP, Gibbs

Exact Deterministic approximation Stochastic approximation
BP=belief propagation, EP = expectation propagation, ADF = assumed density filtering, EKF = extended Kalman filter, UKF = unscented Kalman filter, VarElim =
variable elimination, Jtree= junction tree, EM = expectation maximization, VB = variational Bayes, NBP = nonparametric BP
Slide Credit: Kevin Murphy

23rd December, 2013

Search Algorithms: Further Illustrated

Lecture 20

Ganesh Ramakrishnan

CS337, Artificial Intelligence and Machine Learning

Search Algorithms Illustrated

• Consider the problem of searching shortest
path(s) from S (start) to G (goal).

• Refer:https://moodle.iitb.ac.in/pluginfile.php/270556/mod_resource/content/1/searchingOnGraphs.pdf

Depth First Search

Breadth First Search

Hill Climbing Search

Beam Search

Recap Beam Search for HMM POS

Heuristic Search
Suppose in addition to the standard search

specification we also have a heuristic.
A heuristic function maps a state

onto an estimate of the cost to the
goal from that state.

Can you think of examples of heuristics?
• Eucledian distance?
• Smallest of all outgoing edge weights at a node?
• Recap HMM: The highest emission probability

Denote the heuristic by a function h(s) from states
to a cost value.

Recap: A* Search: Optimistic Heuristic
for HMM POS Taggiong

• Consider the words remaining
– Use Optimistic Heuristic:

• Upper bound on score (highest possible score)
– Optimistic heuristic for tagging:

• Best Emission Prob

Recap: A* Search: Optimistic Heuristic
for HMM POS Taggiong

Euclidian Heuristic

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

Euclidian Heuristic

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

Steepest Ascent Hill Climbing
Init-PriQueue(PQ)
Insert-PriQueue(PQ,START,h(START))
while (PQ is not empty and PQ does not contain a goal state)

(s , h) := Pop-least(PQ)
foreach s’ in succs(s)
if s’ is not already in PQ and s’ never previously been visited

Insert-PriQueue(PQ,s’,h(s’))

• Steepest ascent hill climbing considers all possible
extensions of the current path

• In contrast, the simple hill climbing algorithm expands only
on that s’ in succs(s) that has least value of h(s’)

Steepest Ascent Hill Climbing
Init-PriQueue(PQ)
Insert-PriQueue(PQ,START,h(START))
while (PQ is not empty and PQ does not contain a goal state)

(s , h) := Pop-least(PQ)
foreach s’ in succs(s)
if s’ is not already in PQ and s’ never previously been visited

Insert-PriQueue(PQ,s’,h(s’))

A few improvements to this algorithm can make things better

Algorithm Comp
lete

Optimal Time Space

BestFS Best First
Search

Y N O(min(N,BLMAX)) O(min(N,BLMAX))

Steepest Ascent Hill Climbing can
Look Stupid!

• Steepest Ascent Hill Climbing is clearly not
guaranteed to find optimal

• Obvious question: What can we do to
avoid the stupid mistake?

S A CB G

h=3 h=2 h=1

2

4

11 2

h=4 h=0

A* - The Basic Idea
• Steepest Ascent Hill Climbing: When you expand a node

n, take each successor n' and place it on PriQueue with
priority h(n')

• A*: When you expand a node n, take each successor n'
and place it on PriQueue with priority

(Cost of getting to n') + h(n') (1)

Let g(n) = Cost of getting to n (2)

and then define…

f(n) = g(n) + h(n) (3)

A* Looking Non-Stupid

S A CB G

h=3 h=2 h=1

2

4

11 2

h=4 h=0

When should A* terminate?
Idea: As soon as it generates a goal state?
Look at this example:

S

D

B

CA

G

1 1

1

7

1

7

h = 7

h = 1

h = 2

h = 3

h = 0

h = 8

Correct A* termination rule:
A* Terminates Only When a Goal State Is Popped
from the Priority Queue

S

D

B

CA

G

1 1

1

7

1

7

h = 7

h = 1

h = 2

h = 3

h = 0

h = 8

A* revisiting states
Another question: What if A* revisits a state that was
already expanded, and discovers a shorter path?

S

D

B

CA

G

1 1

1

7

1

h = 7

h = 1

h = 2

h = 3

In this example a state that
had been expanded gets
re-expanded. How and
why?

1/2

h = 8

A* revisiting states
What if A* visits a state that is already on the queue?

S

D

B

CA

G

1 1

1

7

1

h = 7

h = 1

h = 8

h = 3

In this example a state that had
been on the queue and was
waiting for expansion had its
priority bumped up. How and
why?

1/2

h = 8

note that this h
value has changed
from previous
page.

Slide 35

The A* Algorithm

• Priority queue PQ begins empty.
• V (= set of previously visited (state,f,backpointer)-triples) begins empty.
• Put S into PQ and V with priority f(s) = g(s) + h(s)
• Is PQ empty?

➢Yes? Sadly admit there’s no solution
➢No? Remove node with lowest f(n) from queue. Call it n.
➢ If n is a goal, stop and report success.
➢ “expand” n : For each n' in successors(n)….

• Let f’ = g(n') + h(n') = g(n) + cost(n,n') + h(n')
• If n' not seen before, or n' previously expanded with

f(n')>f’, or n' currently in PQ with f(n')>f’
• Then Place/promote n' on priority queue with priority f’

and update V to include (state=n', f ’, BackPtr=n).
• Else Ignore n'

use sneaky trick
to compute g(n)

= h(s) because
g(start) = 0

Is A* Guaranteed to Find the
Optimal Path?

A

GS

1
1

h = 6

h = 0

3

Nope. And this example shows why not.

h = 7

Admissible Heuristics
• Write h*(n) = the true minimal cost to goal

from n.
• A heuristic h is admissible if

h(n) <= h*(n) for all states n.
• An admissible heuristic is guaranteed

never to overestimate cost to goal.
• An admissible heuristic is optimistic.

A* with Admissible Heuristic
Guarantees Optimal Path

