


Instruction Set
Architecture

Virendra Singh
Associate Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-739: Processor Design

Lecture 2



Running Program on Processor

Processor Performance = ---------------
Time

Program

Architecture

Compiler Designer

Instructions Time

Program Instruction

(code size)

= X

EE-739@IITB15 Jan 2013 2



Computer Architecture

• Instruction Set Architecture (IBM 360)
– … the attributes of a [computing] system as seen by the

programmer. I.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls, the logic design, and
the physical implementation. -- Amdahl, Blaaw, &
Brooks, 1964

15 Jan 2013 EE-739@IITB 3



Running Program on Processor

Processor Performance = ---------------
Time

Program

Architecture --> Implementation

Compiler Designer Processor Designer

Instructions Cycles

Program Instruction
Time

Cycle

(code size)

= X X

(CPI)

EE-739@IITB15 Jan 2013 4



Running Program on Processor

Processor Performance = ---------------
Time

Program

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Instructions Cycles

Program Instruction
Time

Cycle

(code size)

= X X

(CPI) (cycle time)

EE-739@IITB15 Jan 2013 5



Iron Law
• Instructions/Program
 Instructions executed, not static code size
Determined by algorithm, compiler, ISA

• Cycles/Instruction
Determined by ISA and CPU organization
Overlap among instructions reduces this term

• Time/cycle
Determined by technology, organization, clever circuit

design

15 Jan 2013 EE-739@IITB 6



Computer Architecture’s
Changing Definition

• 1950s to 1960s:
Computer Architecture Course = Computer Arithmetic

• 1970s to mid 1980s:
Computer Architecture Course = Instruction Set
Design, especially ISA appropriate for compilers

• 1990s onwards:
Computer Architecture Course = Design of CPU
(Processor Microarchitecture), memory system, I/O
system, Multiprocessors

15 Jan 2013 EE-739@IITB 7



Instruction Set Architecture
(ISA)

instruction set

software

hardware

15 Jan 2013 EE-739@IITB 8



• Rely on abstraction layers to manage
complexity

Applications

Technology

Computer
Architecture

Computer Architecture

Quantum Physics

Transistors & Devices

Logic Gates & Memory

Von Neumann Machine

x86 Machine Primitives

Visual C++

Firefox, MS Excel

Windows 7

15 Jan 2013 EE-739@IITB 9



INSTRUCTION SET

ARCHITECTURE

15 Jan 2013 EE-739@IITB 10



Instruction Set Architecture
• Instruction set architecture is the structure of a

computer that a machine language programmer
must understand to write a correct (timing
independent) program for that machine.

• The instruction set architecture is also the machine
description that a hardware designer must
understand to design a correct implementation of
the computer.

15 Jan 2013 EE-739@IITB 11



Interface Design
A good interface:
 Lasts through many implementations (portability,

compatibility)
 Is used in many different ways (generality)
 Provides convenient functionality to higher levels
 Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

15 Jan 2013 EE-739@IITB 12



Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)

15 Jan 2013 EE-739@IITB 13



Evolution of Instruction Sets
• Major advances in computer architecture are

typically associated with landmark instruction set
designs

– Ex: Stack vs GPR (System 360)
• Design decisions must take into account:
 technology
machine organization
programming languages
 compiler technology
operating systems

• And they in turn influence these

15 Jan 2013 EE-739@IITB 14



What Are the Components of an ISA?
• Sometimes known as The Programmer’s Model of the

machine
• Storage cells
General and special purpose registers in the CPU
Many general purpose cells of same size in memory
 Storage associated with I/O devices

• The machine instruction set
The instruction set is the entire repertoire of machine

operations
Makes use of storage cells, formats, and results of the

fetch/execute cycle
 i.e., register transfers

15 Jan 2013 EE-739@IITB 15



• The instruction format
 Size and meaning of fields within the instruction

• The nature of the fetch-execute cycle
 Things that are done before the operation code

is known

What Are the Components of an
ISA?

15 Jan 2013 EE-739@IITB 16



• C Statement
f = (g+h) – (i+j)

Assembly instructions
add t0, g, h
add t1, I, j
sub f, t0, t1

• Opcode/mnemonic, operand ,
source/destination

Instruction

15 Jan 2013 EE-739@IITB 17



• Why not “f = (g+h) – (i+j)” as one instruction?
• Church’s thesis: A very primitive computer can

compute anything that a fancy computer can
compute – you need only logical functions, read and
write to memory, and data dependent decisions

• Therefore, ISA selection is for practical reasons
– Performance and cost not computability

• Regularity tends to improve both
– E.g, H/W to handle arbitrary number of operands

is complex and slow, and UNNECESSARY

Why not Bigger Instructions?

15 Jan 2013 EE-739@IITB 18



• Which operation to perform add r0, r1, r3
– Ans: Op code: add, load, branch, etc.

• Where to find the operands: add r0, r1, r3
– In CPU registers, memory cells, I/O locations, or part

of instruction

• Place to store result add r0, r1, r3
– Again CPU register or memory cell

What Must an Instruction
Specify?(I)

Data Flow

15 Jan 2013 EE-739@IITB 19



• Location of next instruction add r0, r1, r3
br endloop

– Almost always memory cell pointed to by program
counter—PC

• Sometimes there is no operand, or no result,
or no next instruction. Can you think of
examples?

What Must an Instruction Specify?(II)

15 Jan 2013 EE-739@IITB 20



Instructions Can Be Divided into 3 Classes (I)
• Data movement instructions

– Move data from a memory location or register to another
memory location or register without changing its form

– Load—source is memory and destination is register
– Store—source is register and destination is memory

• Arithmetic and logic (ALU) instructions
– Change the form of one or more operands to produce a

result stored in another location
– Add, Sub, Shift, etc.

• Branch instructions (control flow instructions)
– Alter the normal flow of control from executing the next

instruction in sequence
– Br Loc, Brz Loc2,—unconditional or conditional branches

15 Jan 2013 EE-739@IITB 21



Thank You

15 Jan 2013 EE-739@IITB 22

	Instruction Set Architecture�
	Slide Number 2
	Computer Architecture
	Slide Number 4
	Slide Number 5
	Iron Law
	Computer Architecture’s Changing Definition
	Instruction Set Architecture (ISA)
	Computer Architecture
	INSTRUCTION SET ARCHITECTURE
	Instruction Set Architecture
	Interface Design
	Evolution of Instruction Sets
	Evolution of Instruction Sets
	What Are the Components of an ISA?
	What Are the Components of an ISA?
	Instruction
	Why not Bigger Instructions?
	What Must an Instruction Specify?(I)
	What Must an Instruction Specify?(II)
	Instructions Can Be Divided into 3 Classes (I)
	Thank You

