PAINT CHARACTERISTICS

Prof. A.S.Khanna Corrosion Science & Engg. IIT Bombay

Various Kinds of Tests for paint Coatings

• Paint Characterization

 Volume solid, Density, viscosity, drying and curing properties, in case of two components – mixing ratio, pot life

Mechanical Properties

Hardness, abrasion, scratch, adherence, pullout strength, flexibility

Chemical Resistance Properties

- Salt Spray
- weathering,
- Humidity
- Immersion tests
- Permeability

NON VOLATILE MATTER

Significance

- Indicates the weight solids in paint
- Higher solids means higher coverage

Stoving Method (IS 101 - Part 2/Sec 2)

- Weight 2 gms of sample in lid. Spread it across
- Place in oven at 105 Deg. C / 3 hrs or 120 Deg.C/1 hr
- Calculate the weight retained in percentage

Mass of a unit volume of a material at a specified temperature.

Weight per litre cup (IS 101 - Part 1/ Sec 7)

- Cylindrical cup which can hold 100 ml of paint is used
- Determine the weight of the empty cup.
- Fill the cup with the paint and determine the weight.
- The difference in weight multiplied 10 gives WPL (weight per litre)

Significance

- If density is not within spec, then there is a good chance that there can be some error in charging of the batch.
- Can act as a check on the solids of paint.

It is defined as the total volume of non volatile solids present in one litre of paint

Significance

- A measure of spreading capacity of paint
- Higher volume solids product will give higher coverage at a given DFT
- It gives an indication of the amount of volatile solvents used in the paint
- Higher volume solids product are being preferred due to VOC regulations in developed countries
- High build products are designed with higher volume solids for higher thickness deposition per coat

Volume solids - (ASTM D 2697)

- Initially determine the % NVM by weight and WPL of the paint
- Take circular disc of 60 mm dia. and take its weight in air and in water.
- Apply the paint to the disc and allow it to dry.
- Take weight of coated disc in in air & in water.
- Volume solids is then calculated by formula .

- W_1 = weight of disc in air, g : W_2 =weight of disc in water
- D = Density of water , g/ml
- **<u>Volume of disc G</u>** = $(W_1 W_2)/D$
- W_3 = weight of coated disc in air, g
- W_4 = weight of coated disc in water , g
- Volume of coated disc $\mathbf{H} = (W_3 W_4) / D$
- <u>Volume of wet coating</u> = F = H-G
- <u>Volume of dry coating</u> = $V = (W_3 - W_1) / (\% NVM * WPL)$

The volume solids is then calculated as below by <u>Formula</u>

Volume of dried coating V.S. = ----- X 100 Volume of wet coating

COVERAGE CALCULATION THEORETICAL COVERAGE

Volume solids X 10

Theo. Coverage $(M^2 / lit) =$ ------

DFT (Microns)

For a paint with 80% VS Theo. Coverage at 100 µm DFT = 80 x 10/100 = 8 sq.mt / lit

PRACTICAL COVERAGE

Actual coverage of paint after taking into account all possible loss factors involved during the painting process

TYPES OF LOSSES DURING APPLICATION

• Paint loss during application may be due to :

a) Apparent losses

- -- Effect of blast profile
- -- Paint distribution losses
- b) Actual losses
 - -- Application losses
 - -- Paint wastage

APPARENT LOSS

DUE TO EFFECT OF BLAST PROFILE

Surface	Blast Profile	DFT Loss *
Unblasted steel	0	0
Steel blasted using round shot	0 - 50 μ	10 μ
Fine open blasting	50 - 100 μ	35 μ
Coarse open blasting	100 - 150 μ	60 µ
Old pitted steel – reblasting	150 - 300 μ	125 μ

* DFT Loss - Addl. DFT required to Compensate blast profile

ACTUAL LOSS DUE TO APPLICATION METHOD

-- 5 - 10%

-- 45-50%

-- 30%

For Brush / Roller Application For Air Spray -- 50-60% **For Airless Spray For Electrostatic Air Assisted Spray**

The loss factor will also depend on :

- Shape of structure
- Atmospheric Condition Wind velocity
- Painting location e.g. Height

APPARENT LOSS DUE TO PAINT DISTRIBUTION

Application Method	Type of Structure	Estimated Loss (%)
Brush & Roller	Simple Structure	5%
do	Complex Structure	10-15%
Spray	Simple Structure	20%
do	Complex Structure	40%

Higher DFT against minimum stated DFT due to uneven paint distribution / over deposition during application

ACTUAL LOSS DUE TO PAINT WASTAGE

This is losses due to

- -- Paint spillage due to handling
- -- Retention in container / brush / spray line etc
- -- Premature gelling during application (e.g. improper mixing ratio, high temperature etc)

Estimated Loss factor for

-- 1K Paint -- Max 5% -- 2K Paint -- 5-10%

Application of 2K High Solid Epoxy Paint :

- 2 coat application / airless spray
- 100 microns / coat
- Sandblasted substrate Sa 21/2 50 microns profile
- Complex object (confined space inside tank)
- Volume Solid 80%
- Theoretical Coverage 4 sq.mt / lit at 200 microns DFT

WHAT IS THE PRACTICAL COVERAGE ?

Required DFT Loss due to blast profile Loss due to distribution @ 40% (100 x 0.4)

Loss due to application @ 5% (150 x 0.05) Loss due to wastage @ 10% (150 x 0.1)

Extra Paint used -- 72.5%

First Coat100 microns10 microns40 microns150 microns7.5 microns

15 microns

172.5 microns

Required DFT Loss due to blast profile Loss due to distribution @ 40% (100 x 0.4)

Loss due to application @ 5% (140 x 0.05) Loss due to wastage @ 10% (140 x 0.1)

Extra Paint used -- 61%

Second Coat 100 microns Nil 40 microns ------------**140 microns** 7 microns 14 microns **161 microns**

72.5 + 61Total loss for 2 coats = ----- = 66.75% 2

This means 66.75% extra paint is required w.r.t. theoretical quantity i.e. 1.67 lit paint is actually required to compensate all the losses.

Practical Spreading Rate =

Theo. Coverage / Lit

Actual Paint Required

= 4 / 1.67 = 2.39 sq.mt. / lit

Overall Loss Factor

= (4 - 2.39) x 100 / 4 = 40.25%

Utilisation Efficiency = 60%

VISCOSITY

Viscosity is the force per unit area that resists the

flow of two parallel fluid layers

Significance

- Flow and leveling properties
- Anti-sag properties

Efflux Viscometers - Ford Cup (ASTM D 1200)

- Brass cup conical bottom 4.12 mm orifice
- Used for low viscosity materials
- Measures the time taken for discharge in seconds

VISCOSITY

Stormer viscometers - (ASTM D 562)

- Paddle is immersed in the paint and load in weight applied through string
- Load required to produce 200 revolutions in 60 seconds is recorded
- Stroboscopic timer will indicate the motionless lines when 200 rpm is achieved

Indicates the rate of drying / film formation of the paint film

Significance

- Drying time depends on resin chemistry
- Can detect wrong mixing ratio / improper mixing in case of two pack products
- Slower drying time than specified indicate slow curing and delayed / inadequate resistance properties

Set to touch - (ASTM D 1640)

- Lightly touch the paint film with the tip of a clean finger
- Immediately place the finger tip against a piece of clean glass.
- A film is set-to-touch when no coating is transferred to the glass plate

Dust Free - (ASTM D 1640)

- Cotton fibers are dropped on the paint film from a height of 1 inch
- The film is considered dust-free when a gentle current of air removes the fibre from the surface

Tack Free - (ASTM D 1640)

- Tack is the ability of a coating to hold an object
- Test paper is placed on the paint film
- Steel cylinder (2 inch dia, 2.85 kgs) is placed on the paper
- After 5 secs remove the weight and invert the test specimen
- If the paper falls within 10 secs the paint is said to be tack free.

Dry Hard - (ASTM D 1640)

- Involves pressing the paint film with thumb
- If no noticeable mark is seen after the paint film is lightly rubbed with a soft cloth, the coating is said to be hard dry

Dry Through - (ASTM D 1640)

- Involves pressing the paint film with thumb and turning the thumb through an angle of 90 Deg.
- If no loosening, detachment, wrinkling is noticed, the paint is said to be dry through

Some other Important Properties

- Sag Resistance
- Dispersion of pigment
- Flash Temperature

Paint Coating Evaluation

Wet Film Thickness Measurement

DFT = WFT x % Vol. Solid

Thickness Measurement

Magnetic adhesion

Magnetic adhesion

balance beam principle

Magnetic induction

Eddy-currents

Ultrasonics principle

_____.

MikroTest

>non-magnetic coatings on steel

Nickel on steel

Nickel on non-ferrous metals

MiniTest Series

non-magnetic coatings on iron and steel

insulating coatings on non-ferrous metals

>non-ferrous metal coatings on insulating substrates

Dual Gauge

Magnetic induction

Eddy-currents

Mechanical Properties of Paint Coatings