Control Systems: Higher-order Systems

Learning Objectives

General closed-loop response function
Pole-zero map
-overdamped closed-loop poles
-critically damped closed-loop poles
-undamped closed-loop poles
-negatively underdamped closed-loop poles
-negatively overdamped closed-loop poles
Transient response using residues
Example




Control Systems: Higher-order Systems

General closed-loop response function

C(s) _  G(s)
R(s) 1+G(s)H(s)

Open-loop |
G(S) H (S) — K (S - 21)(5 — 22)...(8 — Zm) transfer function

(5= P)(S—P,)-.(s—P,)

C() _ G(s)(s—p)(s—P,).--(S— Py)
R(S) (5= P)(S—Py)-(8 = P,) +K(s=2)(8 ~2,)...(S - Z,,)




Control Systems: Higher-order Systems

Pole-zero map |Overdamped closed-loop poles

Pole-zero map Normalized response
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Pole-zero map |Critically damped

closed-loop poles

Pole-zero map Normalized response
Ifl} : FI?IM Critically damped system
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Pole-zero map

Underdamped
closed-loop poles

Normalized response

Pole-zero map

| s plane
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Pole-zero map

Undamped closed-loop poles

Pole-zero map

Normalized response
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Pole-zero map |Negatively underdamped
closed-loop poles

Pole-zero map Normalized response
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Pole-zero map |Negatively overdamped
closed-loop poles

Pole-zero map

i'-'" ¢ plane
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Transient response using residues

C(s) = R(S)G(S)(s— p)(S—p,)---(S—Pp,)
(s—p)(s—p,)..(s—p,)+K(s—2z)(s—2,)..(s—2,)

C(s)——+z

|1S+p|

Step response

[HES
(@)




Control Systems: Higher-order Systems

Transient response using residues

a = G(S)(S_ pl)(s_ pz)---(s_ pn)
i s[(S— P)(S—P,)...(S—p,)+ K(S—Zl)(s—zz)---(S—Zm)]

x(s—p;)

_ G(S)(s— P)(S~ Po)-(= P,) S|
S[(s= (s = P)- (8= P) +K(S=2)(8~2,)--(5-2,)] | _

ct)=b+> ae !
=1
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Example

K HE=

6= MOy [k
GEH(E)=—re -8

(s+5)(s+1) (s+5)(s+1)
CE)__ K(s+D) o= 31|
R(s) (s+5)(s+1)+K,K,
CE) (4] s+1 p; =—3— ]

R(S) (s545)(s+1)+5 s2+65+10
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Example Unit step input
Ss+1
. 5(s*+65+10) b_s(sz+65+10)><S =04
s=0
(s+1) . (—2+]) '
_ 613 _ ~-0.05-0.35
A s(sz+63+10)x( J)s=—3+j -3+ J)(2)) J
(s+1) . (=2-1J) i
o (s34 _ =-0.05+0.35
i s(sz+6s+10) ( J)s=—3—j (=3-1)(=2]) J

15
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Example

O'1+ (-0.05-0.35)) N (-0.05+0.35))

C(s) = _ :
S S+3— | S+ 3+ |

c(t)=0.1+e > (-0.1cost +0.7sint)
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Example
Kl
G,(s) = (s+5) __ 1
(Kl j( sz_ K, s*+55+9
1+ ——
s+5/\s+1) (s+5)
_limG (s) = X 1t
Kp—E'LQGl(S)—g S, () 1K, 1+1 0.9
9
c(t) =0.1+e*(-0.1cost +0.7sint)




Topic #11

Synthetic Division

Reference textbook:

Control Systems, Dhanesh N. Manik,
Cengage Publishing, 2012



Control Systems: Synthetic Division
Learning Objectives

Closed-loop poles and roots of a polynomial
Newton-Raphson’s method

Limitations of Newton-Raphson’s method

Dividing a polynomial
Synthetic division




Control Systems: Synthetic Division

Closed-loop poles and roots of a polynomial

* The characteristic equation for
closed-loop response is a polynomial

* The polynomial order is dependent on the
number of closed-loop poles

* Solving the characteristic equation
gives all the closed-loop poles

* Closed-loop poles determine the dominant
behaviour of closed-loop response
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Newton-Raphson’s method

How to solve for the roots of a polynomial?

Using Newton-Raphson’s method

f(s)=a s"+a_,s"" +---a,5+a,

Using an initial guess of s

T(s,)

"f(s,

S, =S

N+ Converges in 4 to 5 iterations
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Limitations of Newton-Raphson’s method

* For a higher-degree polynomial, guessing different
starting points for every root is difficult; might converge to
the same root from different starting points.

* Applying Newton-Raphson’s method to compute
all the roots, without reducing the polynomial order
is computationally inefficient

* Therefore, the polynomial order should be reduced
using a known root using synthetic division, before
proceeding to computing the next root
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Dividing a polynomial

S —2

SZ

5% +65° +4s5+2
s° — 257

85° + 45+ 2

2/2/2016
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Dividing a polynomial

5% +8s

S—2 | S°+65°+45+2
% —2s°
85° +45+2
8s° —165
20s + 2

2/2/2016




Control Systems: Synthetic Division

Dividing? 52185+ 20 |Quotient
polynomial
S—2 | $S+65°+4s+2
5% — 267
85° + 45+ 2
85° —165
20S + 2
20s —40

47| Remainder
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Synthetic Division

Let us now obtain the quotient and remainder of
the polynomial

SS n 632 + 45 4 2 when divided by S — 2
16 4 2
2
/

1
1 8

Coefficients of the
polynomial

2/2/2016
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Synthetic Division

Let us now obtain the quotient and remainder of
the polynomial

7 when divided by S 2

polynomial

216

g A 20

1 A

2/2/2016 10
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Synthetic Division

Let us now obtain the quotient and remainder
of the polynomial

S3 n 652 + 45 4+ 2 when divided by S — 2

__ﬂ_
.16 A0

VIR
1% 8" 207 42

Coefficients of the
polynomial

2/2/2016 11
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Synthetic Division

Let us now obtain the quotient and
remainder of the polynomial

5% + 652 + 45 + 2 when dividedby S — 2

1 6 4 2
2 16 . A0
1/*1/8/1&/ 20/*1 4?7 Remainder

\ l
|

52/220E|‘88 20 | Quotient

Coefficients of
the polynomial

12
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Synthetic Division

DivisorxQuotient+Remainder=Dividend

(5—2)(32+85+20]+42:33+632+4s+2

(s—1)(s*+as+b)=5°+65"+4s+2

Where r, is one of the roots of the polynomial, the remainder
is zero and the quotient can be solved for the remaining roots;
the values of the quotient a and b can be obtained from
synthetic division
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Example

Now let us obtain all roots of the polynomial by using

Newton-Raphson’s method and synthetic division

S

f(s)=5"+65°+4s+2
f (s)=3s°+12s+4
f(s,)

n ' Newton-Raphson’s method
f (s, P

1 =39S

N+

2/2/2016
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Example

Iteration fls,) |f(s,) |S..1
No.
1 -6 -22 40 -5.45

2/2/2016

15




Control Systems: Synthetic Division

Example

--

-5.45
2 -5.45 -3.46 27.7 -5.325

2/2/2016

16
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Example

--

-5.45
-5.45 -3.46 27.7 -5.325
3 -5.325 -0.0004 25.04 -5.3186

N

2/2/2016




Control Systems: Synthetic Division

Example

--

-5.45
-5.45 -3.46 27.7  -5.325
-5.325 -0.0004 25.04 -5.3186
-5.3186 =0
Hence the first root r;=-5.3186

The above root can be used to reduce the polynomial
order using synthetic division

S W N =

2/2/2016 18
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Example Synthetic Division

o

-5.3186

2/2/2016

19
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Example

Synthetic Division

N

-5.3186 -3. 62409

36
83‘&%6 ‘)?’x

f 06814 0.3759

2/2/2016
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Example Synthetic Division

o

-5.3186 -3.62409 -2

\33‘@6 *2
w A A
" 0.6814 0.3759 0

2/2/2016

21
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Example

Synthetic Division

o

-5.3186 -3.62409 -2

1 0.6814 0.3759 0 Remainder

\

}

!

s° +0.6814s

Quotient

0.3759

2/2/2016

22
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Example Solving the quadratic equation

s +0.6814s +0.3759

_0.6814++/0.68142% — 4% 0.3759
I3 = 5
— ~0.3407 +0.5099 |

(s +5.3186)(s2 + 0.6814s + 0.3759)
— (s +5.3186)(s +0.3407 — 0.5099 j)(s + 0.3407 + 0.5099 j)

=35’ +65° +45+2
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Synthetic division can be used to easily obtain the roots of
any higher degree polynomial and is helpful in the root locus
method

A complex number can also be used as an initial guess

By using the properties of root-locus, some roots are already
known; especially from the root locus arms that are along the
real axis. Therefore, by using synthetic division, other roots

can be determined

This method is extensively used in root locus
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Topic #12

Closed-loop poles
on the imaginary axis

Reference textbook:

Control Systems, Dhanesh N. Manik,
Cengage Publishing, 2012




Control Systems: Imaginary closed-loop poles

Learning Objectives

* Procedure
* Examples
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Procedure

Replace the denominator of the
closed-loop response with s=jw and
equate the real and imaginary parts to
Zero

w




Control Systems: Imaginary closed-loop poles

Example 1
G(S):s(s+1)’H(S):1
K
C(s): G(s) _ s(s+1) K B(S)ZSZ+S+K
R(s) 1+G(s)H(s) ¢, K s +s+K
s(s+1)
B(jo) = (jo)" +(jo) +K =(K-0) + jo| 4= K

w=0

Closed-loop poles are not on the imaginary axis for any positive value of K




Control Systems: Imaginary closed-loop poles

Example 2
K
O =i =1
K
C(s) G(s) _S(s+2)(S+4) K
R(s) 1+G(s)H(s) 1, K 5% 4+652+8s5+K
S(s+2)(S+4)
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Example 2

B(s)=s’+6s°+8s+K
B(jo)=(jo)’ +6(jw)*+8jo+K =(K—-60°)+ j(Bo— o)

a)=i\/§ K:6w2:48

Two closed-loop poles on the imaginary
axis for K=48

(ep}
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Example 3
G(S)= ; K H(S):l
s“(s+1)
K
C(s) G(s) _s(s+D) K

R(s) 1+G(s)H(s) _1+ K $+s2+K
s*(s+1)




Control Systems: Imaginary closed-loop poles

Example 3

B(s)=s’+s°+K

B(jo) =(jo)’ +(jo)° +K=(K-&") - jo

w=0 K=0

Closed-loop poles are not on the imaginary axis for any positive value of K

e}
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Example 4
K
) s* +5s° +8s° + 65
K
Cs)_  G() _ s*+55°+85°+6s _ K
R(s) 1+G(s)H(s) 4, K s* +55° +8s° +6s+ K

s* +55° +85° + 65

(<)
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Example 4

B(s)=s"+5s° +8s5° +6s+ K

B(jo)=(jo)' +5(jo)’ +8(jo)’ +6jo+K
= (0" —8w° +K) + j(6w—50°)

6 o [8)_(8) _
w:iﬁ K =8 @ (5) 8.16

Two closed-loop poles on the imaginary axis for K=8.16
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Example 5
K (s?+10s+100) H(s) =1
G(s) = 4 3 2
s” +20s” +100s° +500s +1500
K (52 +10s +1oo)

Ce)_ G(s)  _ s*+20s*+100s? +500s +1500
R(s) 1+G(s)H(s) . K (s*+10s+100)

" §* + 205° +100s? + 5005 + 1500

K (32 +10s +1oo)

5% 4+205s% +100s? + 5005 +1500 + K (32 +10s +1oo)

™ NI (W | wmals 11
DN IvViahtK Il




Control Systems: Imaginary closed-loop poles

Example 5

B(s) = s* +20s° +100s” +500s +1500+ K (s* +10s +100)
=5 +20s® +s° (100 + K) + s(500+ 10K ) +1500 +100K

B(jo) = (jo)* +20(jo)® + (jw)?(100+ K)
+ (jw)(500+10K)+1500+100K b+ 500+10K
=| o' - »*(100+ K) +1500+ 100K | B 20

+ [—20a)3 + (500 +10K)]
K? —-200K +1500=0| |K,=7.8and K, =192

Four closed-loop poles on the imaginary axis for
K,=7.8and K, =192

)
5;
3
7
=
N




Control Systems: Imaginary closed-loop poles

Example 6| g(s) = 4 3K : H(s)=1
S +S +S +5S
C(s) _  G(s)
R(s) 1+G(s)H(s)
K
_ " +s8°+s8%+s
1+ K
s*+s°+s°+s
K

s* +8°+5° +s+K
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Example 6

B(s)=s"+s’+s5°+s+K
B(jo) = (jo)* +(j)* +(jo) + jo+ K = (@ - + K) + j(0-°

w==*1 K=0

No closed-loop poles on the imaginary axis for K>0

N

1A
14



ME 779 Control Systems

Topic #13

Routh-Hurwitz’s Stability
Criterion

Reference textbook:

Control Systems, Dhanesh N. Manik,
Cengage Publishing, 2012




Control Systems: Routh-Hurwitz’s stability criterion

1 Characteristic
B(s)=a,s"+a, ,S" +---aS+8, | equation

(S _ I’l)(S _ rz) " (S _ rn) =0 Roots of the characteristic
: equation
r,1=12..

B(s)=s"—(r,+r,+---r )s""

+(0r, + 0,0+ +--)s"
—(rrr +rer, +--)s" " 4

(-)"rrr,...r, =0

w




Control Systems: Routh-Hurwitz’s stability criterion

B(s) =s" — (sumof all the roots)s"™
+ (sumof the products of the rootstaken 2 at atime)s"
— (sumof the products of the rootstaken 3 atatime)s"™ +---
+(—1)"(product of all nroots) =0




Control Systems: Routh-Hurwitz’s stability criterion

Necessary condition: coefficients of the
characteristic polynomial must be positive

al




Control Systems: Routh-Hurwitz’s stability criterion

Example 1

Consider a third order polynomial
B(s) =5’ +3s° +16s+130

Although the coefficients of the above polynomial are positive,
determine the roots and hence prove that the rule about

coefficients being positive is only a necessary condition for the
roots to be in the left s-plane.

(ep}




Control Systems: Routh-Hurwitz’s stability criterion

Example 1

L=-57r,,=1£5]

By using Newton-Raphson’s method

Therefore, from the above example, the
condition that coefficients of a polynomial
should be positive for all its roots to be in the
left s-plane is only a necessary condition

N



Control Systems: Routh-Hurwitz’s stability criterion

Sufficient condition | Method |

(using determinants,

Ay 3 A5 | [decreases by two along the row
a a a . increases by one down the column

e}




Control Systems: Routh-Hurwitz’s stability criterion

Sufficient condition | Method |

(using determinants,

>0,A,=|a, a,_, a _,/>0--

(<)




Control Systems: Routh-Hurwitz’s stability criterion

Sufficient condition [Method Il Using array

n h . = (an—l)(an—z) —a, (an—s)
S a, A Ay n-1 a
Sn_l an—l an—3 an—5 i
s"?b ., b. b
n-3 i " i b _ (a‘n—l)(an—4) o an (a‘n—s)
S Cn—l Cn—3 Cn—5 n-3
. an—1

_ (bn—l)(an—S) —d, (bn—3)

Cn 1
B b
n-1
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Sufficient condition [Method Il Using array

number of roots of B(s) with positive real parts is equal to
the number of sign changes a,, a,.;, b,1, C,.1, €tc.

11
1L




Control Systems: Routh-Hurwitz’s stability criterion

Example 2

G(s)=—  H(s)=1
S(s+1)

K
C(s) G(s) . s(s+1) K
R(s) 1+G(s)H(s) ;. K s*+s+K
s(s+1)




Control Systems: Routh-Hurwitz’s stability criterion

Examp|e 2 |Method | using determinants

B(s)=s"+s+K

B(s)=a,s’ +a,s+a,

1 0
A, = 1 K A=1>0 A=K

The system is always stable for K>0




Control Systems: Routh-Hurwitz’s stability criterion

Example 2 |Method Il using array

B(s)=s"+s+K

B(s) =a,s° +a,s+a,

s"11 K
"1 0
s"?|K

There are no sign changes The system is always stable for K>0

1A
14




Control Systems: Routh-Hurwitz’s stability criterion

Example 3
6(s) — K H(s)=1
s(s+2)(S+4)
K
C(s) G(s) _S(s+2)(S+4) K
R(s) 1+G(s)H(s) 4, K - 5°4+652+8s+K

S(s+2)(S+4)

1
19



Control Systems: Routh-Hurwitz’s stability criterion

Examp|e 3 |Method | using determinants

B(s)=s’+6s°+8s+K
B(s)=a,s’ +a,s° +a,s+a,

a, a 0 6 K O A,=6 >0
A,=la, a O Ay = (1) 2 ;2 A,=48-K>0
0 & & A;=K(48-K)>0

Sufficient conditions for and Stability

The feedback system is stable for values of K<48




Control Systems: Routh-Hurwitz’s stability criterion

Example 3 || Method Il using array

B(s)=s’+6s°+8s+K

B(s)=a,s’ +a,s° +a,s+a,

g" a, a, il 1 8
n-1 S 6 K
S a, a, ook
s"?|a,a, —a,a, 5 6

a'Z

T

All values positive for K<48
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Example 4

K
= H(s)=1
() s*(s+1) (5)

K
C(s)  G(s)  s*(s+) K
R(s)_1+G(s)H(s)_1+ K s*+s2+K
s*(s+1)




Control Systems: Routh-Hurwitz’s stability criterion

Example 4

Method | using determinants

B(s)=s’+s°+K

B(s)=a,s’ +a,s° +a,s+a,

A - a a 1 K
> la, a| 1 0
A;=1>0 A,=-K Always negative

The system is always unstable




Control Systems: Routh-Hurwitz’s stability criterion

Example 4 |Method Il using array

B(s)=s’+s°+K

B(s)=a,s’ +a,s° +a,s+a,

s" a, a, s' 0
" a, a, s" K
g2 a,a, —a,a, 0 s"?l-K 0

aZ

The system is always unstable

N
(@»)




