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Learning Objectives

• General closed-loop response function
• Pole-zero map

-overdamped closed-loop poles
-critically damped closed-loop poles
-undamped closed-loop poles
-negatively underdamped closed-loop poles
-negatively overdamped closed-loop poles

• Transient response using residues
• Example

Control Systems: Higher-order Systems
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General closed-loop response function
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Open-loop

transfer function 
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Pole-zero map

Pole-zero map Normalized response 

(a) 
 
(b) 

 

Overdamped closed-loop poles
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Pole-zero map Normalized response 

(a) 

(b) 

 

Pole-zero map Critically damped 
closed-loop poles
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Normalized response Pole-zero map 

(b) (a) 

 

Underdamped 
closed-loop poles

Pole-zero map
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Pole-zero map Normalized response 

(a) 
(b) 

 

Undamped closed-loop polesPole-zero map
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Pole-zero map Normalized response 

(a) (b) 

 

Negatively underdamped
closed-loop poles

Pole-zero map
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Pole-zero map  

  

 

Negatively overdamped
closed-loop poles

Pole-zero map
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Transient response using residues
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 Step response
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Transient response using residues
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Example
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Example 
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Example

3( ) 0.1 ( 0.1cos 0.7sin )tc t e t t   
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ME 779 Control Systems

Synthetic Division

Topic #11 

Reference textbook:

Control Systems, Dhanesh N. Manik,
Cengage Publishing, 2012
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Learning Objectives

Control Systems: Synthetic Division

• Closed-loop poles and roots of a polynomial
• Newton-Raphson’s method
• Limitations of Newton-Raphson’s method
• Dividing a polynomial
• Synthetic division



• The characteristic equation for 
closed-loop response is a polynomial

• The polynomial order is dependent on the 
number of closed-loop poles

• Solving the characteristic equation
gives all the closed-loop poles

• Closed-loop poles determine the dominant
behaviour of closed-loop response

2/2/2016 3
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Closed-loop poles and roots of a polynomial



How to solve for the roots of a polynomial?

Using Newton-Raphson’s method
1

1 1 0( ) n n

n nf s a s a s a s a

   

Using an initial guess of sn
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ss  Converges in 4 to 5 iterations
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Newton-Raphson’s method



Limitations of  Newton-Raphson’s method

• For a higher-degree polynomial, guessing different
starting points  for every root is difficult; might converge to 
the same root from different starting points.

• Applying Newton-Raphson’s method to compute
all the roots, without reducing the polynomial order
is computationally inefficient

• Therefore, the polynomial order should be reduced
using a known root using synthetic division, before
proceeding to computing the next root
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3 26 4 2s s s  2s 
3 22s s

2s

28 4 2s s 

2/2/2016 6

Control Systems: Synthetic Division

Dividing a polynomial



3 26 4 2s s s  2s 
3 22s s

2 8s s

28 4 2s s 
28 16s s

20 2s 
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Dividing a polynomial



3 26 4 2s s s  2s 
3 22s s

2 8 20s s 

28 4 2s s 
28 16s s

20 2s 

20 40s 

42 Remainder

Quotient

2/2/2016
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Dividing a
polynomial



Synthetic Division

Let us now obtain the quotient and remainder of
the polynomial 

3 26 4 2s s s   when divided by 2s 

1 6 4 2

2

1 8

Coefficients of the
polynomial
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Let us now obtain the quotient and remainder of
the polynomial 

3 26 4 2s s s   when divided by 2s 

1 6 4 2

2 16

1 8 20

Coefficients of the
polynomial
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Synthetic Division



Let us now obtain the quotient and remainder
of the polynomial 

3 26 4 2s s s   when divided by 2s 

1 6 4 2

2 16 40

1 8 20 42

Coefficients of the
polynomial
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Synthetic Division



Let us now obtain the quotient and 
remainder of the polynomial 

3 26 4 2s s s   when divided by 2s 
1 6 4 2

2 16 40

1 8 20 42

Coefficients of
the polynomial

2 8 20s s  Quotient

Remainder

2/2/2016
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Synthetic Division



DivisorxQuotient+Remainder=Dividend

  2 3 22 8 20 42 6 4 2s s s s s s       

  2 3 2

1 6 4 2s r s as b s s s      

Where r1 is one of the roots of the polynomial, the remainder
is zero and the quotient can be solved for the remaining roots;
the values of the quotient a and b can be obtained from
synthetic division

2/2/2016 13
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Now let us obtain all roots of the polynomial  by using
Newton-Raphson’s method and synthetic division 

3 2( ) 6 4 2f s s s s   
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Iteration
No.

sn f(sn) f’(sn) sn+1

1 -6 -22 40 -5.45

2/2/2016 15
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Iteration
No.

sn f(sn) f’(sn) sn+1

1 -6 -22 40 -5.45

2 -5.45 -3.46 27.7 -5.325

2/2/2016 16
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Iteration
No.

sn f(sn) f’(sn) sn+1

1 -6 -22 40 -5.45

2 -5.45 -3.46 27.7 -5.325

3 -5.325 -0.0004 25.04 -5.3186

2/2/2016 17
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Example



Iteration
No.

sn f(sn) f’(sn) sn+1

1 -6 -22 40 -5.45

2 -5.45 -3.46 27.7 -5.325

3 -5.325 -0.0004 25.04 -5.3186

4 -5.3186 ≈0

Hence the first root r1=-5.3186

The above root can be used to reduce the polynomial 
order using synthetic division
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1 6 4 2

-5.3186

1 0.6814

Synthetic Division
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1 6 4 2

-5.3186 -3.62409

1 0.6814 0.3759

Synthetic Division
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1 6 4 2

-5.3186 -3.62409 -2

1 0.6814 0.3759 0

Synthetic Division
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1 6 4 2

-5.3186 -3.62409 -2

1 0.6814 0.3759 0

2 0.6814 0.3759s s 
Quotient

Remainder

Synthetic Division
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2 0.6814 0.3759s s 

2

2 3

0.6814 0.6814 4 0.3759
,

2

0.3407 0.5099

r r

j

   


  

Solving the quadratic equation
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2

3 2

( 5.3186)( 0.6814 0.3759)

( 5.3186)( 0.3407 0.5099 )( 0.3407 0.5099 )

6 4 2

s s s

s s j s j

s s s
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Example



• Synthetic division can be used to easily obtain the roots of
any higher degree polynomial and is helpful in the root locus
method

• A complex number can also be used as an initial guess

• By using the properties of root-locus, some roots are already 
known; especially from the root locus arms that are along the
real axis.   Therefore, by using synthetic division, other roots 
can be   determined

• This method is extensively used in root locus 
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ME 779 Control Systems

Closed-loop poles
on the imaginary axis

Topic #12 

Reference textbook:

Control Systems, Dhanesh N. Manik,
Cengage Publishing, 2012
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Learning Objectives

• Procedure
• Examples

Control Systems: Imaginary closed-loop poles
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Procedure

Replace the denominator of the 
closed-loop response with s=jω and 
equate the real and imaginary parts to 
zero

Control Systems: Imaginary closed-loop poles
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Example 1
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2( )B s s s K  

2 2( ) ( ) ( ) ( )B j j j K K j          K 

0 

Closed-loop poles are not on the imaginary axis for any positive value of K

Control Systems: Imaginary closed-loop poles
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3 2( ) 6 8B s s s s K   

3 2 2 3( ) ( ) 6( ) 8 ( 6 ) (8 )B j j j j K K j             

8  
26 48K  

Two closed-loop poles on the imaginary
axis for K=48

Control Systems: Imaginary closed-loop poles

Example 2
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3 2( )B s s s K  

3 2 2 3( ) ( ) ( ) ( )B j j j K K j         

0  0K 

Control Systems: Imaginary closed-loop poles

Example 3

Closed-loop poles are not on the imaginary axis for any positive value of K
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8 8.16
5 5

K
   

      
   

Two closed-loop poles on the imaginary axis for K=8.16

Control Systems: Imaginary closed-loop poles
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2 200 1500 0K K   K1= 7.8 and  K2 = 192.

Control Systems: Imaginary closed-loop poles

Example 5

Four closed-loop poles on the imaginary axis for

K1= 7.8 and  K2 = 192
12
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4 3 2( )B s s s s s K    

4 3 2 4 2 3( ) ( ) ( ) ( ) ( ) ( )B j j j j j K K j                 

1   0K 

No closed-loop poles on the imaginary axis for K>0

Control Systems: Imaginary closed-loop poles

Example 6
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ME 779 Control Systems

Routh-Hurwitz’s Stability
Criterion

Topic #13 

Reference textbook:

Control Systems, Dhanesh N. Manik,
Cengage Publishing, 2012



3

1

1 1 0( ) n n

n nB s a s a s a s a

   
Characteristic

equation

1 2( )( ) ( ) 0ns r s r s r   

, 1,2...ir i 

Roots of the characteristic

equation

1

1 2

2

1 2 2 3 1 3

3

1 2 3 1 2 4

1 2 3

( ) ( )

( )

( )

( 1) 0

n n

n

n

n

n

n

B s s r r r s

r r r r r r s

r r r r r r s

r r r r







   

   

   

 

Control Systems: Routh-Hurwitz’s stability criterion



4

1

2

3

( ) ( )

( 2 )

( 3 )

( 1) ( ) 0

n n

n

n

n

B s s sumof all the roots s

sumof the products of the roots taken at a time s

sumof the products of the roots taken at a time s

product of all n roots







 



 

  

Control Systems: Routh-Hurwitz’s stability criterion



5

Necessary condition: coefficients of the
characteristic polynomial must be positive

Control Systems: Routh-Hurwitz’s stability criterion
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Example 1

Consider a third order polynomial  
 
 3 2( ) 3 16 130B s s s s     

 

 
Although the coefficients of the above polynomial are positive, 
determine the roots and hence prove that the rule about 
coefficients being positive is only a necessary condition for the 
roots to be in the left s-plane. 
 

Control Systems: Routh-Hurwitz’s stability criterion
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1 2,35; 1 5r r j   

By using Newton-Raphson’s method 

Therefore, from the above example, the 
condition that coefficients of a polynomial 
should be positive for all its roots to be in the 
left s-plane is only a necessary condition

Control Systems: Routh-Hurwitz’s stability criterion

Example 1 
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1 3 5

2 4

1 30

n n n

n n n

n

n n

a a a

a a a

a a

  

 

 

 

Sufficient condition

decreases by two along the row

increases by one down the column 

Method I 
(using determinants)

Control Systems: Routh-Hurwitz’s stability criterion



9

1 3 5

1 3

1 1 2 3 2 4

2

1 3

0, 0, 0

0

n n n

n n

n n n n

n n

n n

a a a
a a

a a a a
a a

a a

  

 

  



 

        

Control Systems: Routh-Hurwitz’s stability criterion

Sufficient condition Method I 
(using determinants)
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Method II Using array
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number of roots of B(s) with positive real  parts is equal to

the number of sign changes an, an-1, bn-1, cn-1, etc. 

Control Systems: Routh-Hurwitz’s stability criterion

Sufficient condition Method II Using array
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Example 2 
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2( )B s s s K  

2

1 0

1 K
 

2

2 1 0( )B s a s a s a  

∆1=1 >0 ∆2=K 

The system is always stable for K>0

Method I using determinants

Control Systems: Routh-Hurwitz’s stability criterion

Example 2 



14

1

2

1
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n

s K

s
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2( )B s s s K  

2

2 1 0( )B s a s a s a  

The system is always stable for K>0There are no sign changes

Method II  using array

Control Systems: Routh-Hurwitz’s stability criterion

Example 2 
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3 2( ) 6 8B s s s s K   
3 2

3 2 1 0( )B s a s a s a s a   

3

6 0

1 8 0

0 6

K

K

 
2 0

3 3 1

2 0

0

0

0

a a

a a

a a

 

∆1=6 >0 

∆2=48-K>0 

∆3=K(48-K)>0 

Sufficient conditions for and Stability 

The feedback system is stable for values of K<48 

Control Systems: Routh-Hurwitz’s stability criterion

Example 3 Method I using determinants
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3 2( ) 6 8B s s s s K   
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All values positive for K<48

Control Systems: Routh-Hurwitz’s stability criterion

Example 3 Method II  using array
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3 2( )B s s s K  

3 2

3 2 1 0( )B s a s a s a s a   

2 0

2

3 1

1

1 0

a a K

a a
  

∆1=1 >0 ∆2=-K Always negative

The system is always unstable

Control Systems: Routh-Hurwitz’s stability criterion

Example 4 Method I using determinants
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a



 

The system is always unstable

Control Systems: Routh-Hurwitz’s stability criterion

Example 4 Method II  using array

3 2( )B s s s K  

3 2

3 2 1 0( )B s a s a s a s a   


