ME 779 Control Systems

Topic #28

Nyquist plots: Gain and phase margin

Reference textbook:

Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012

Gain Margin and Phase Margin

phase crossover frequency \mathcal{O}_p is the frequency at which

the open-loop transfer function has a phase of 180°

The gain crossover frequency \mathcal{O}_g is the frequency at which

the open-loop transfer function has a unit gain

Beginning from the gain margin equation

based on root-locus plots $GM = 20\log \frac{K_c}{K_1}$

where K_c is the open-loop gain corresponding to marginal stability and K_1 is the open-loop gain at another arbitrary point on the root-locus, prove that $GM = -20\log |G(j\omega_p)H(j\omega_p)|$;

 \mathcal{O}_p is the phase crossover frequency.

The open-loop transfer function in terms of open-loop poles and zeros is given by $G(s)H(s) = \frac{K(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}$

$$G(j\omega)H(j\omega) = \frac{K |(j\omega - z_1)(j\omega - z_2)\cdots(j\omega - z_m)|}{|(j\omega - p_1)(j\omega - p_2)\cdots(j\omega - p_n)|}$$

Magnitude of the Open-loop frequency response function

$$\begin{aligned} \left| G(j\omega_{p})H(j\omega_{p})^{K_{1}} \right| &= \frac{K_{1} \left| (j\omega_{p} - z_{1})(j\omega_{p} - z_{2})\cdots(j\omega_{p} - z_{m}) \right|}{\left| (j\omega_{p} - p_{1})(j\omega_{p} - p_{2})\cdots(j\omega_{p} - p_{n}) \right|} \\ \left| G(j\omega_{p})H(j\omega_{p})^{K_{c}} \right| &= 1 = \frac{K_{c} \left| (j\omega_{p} - z_{1})(j\omega_{p} - z_{2})\cdots(j\omega_{p} - z_{m}) \right|}{\left| (j\omega_{p} - p_{1})(j\omega_{p} - p_{2})\cdots(j\omega_{p} - p_{n}) \right|} \end{aligned}$$

The ratio of equations result in $GM = -20\log |G(j\omega_p)H(j\omega_p)|$

5

Nyquist plots: Gain and Phase margin Imaginary $G(j\omega_p)H(j\omega_p)$ **GH** Plane $\angle G(j\omega_g)H(j\omega_g)$ ω ω≠∞ Real |GH| = 1 ω_{g} stable $\omega =$

6

Example 1

Determine gain margin, phase margin and stability of the feedback system whose open-loop transfer function given by

$$G(s)H(s) = \frac{K}{s(s+1)}$$

Example 1

No.	Frequency, rad/s	Magnitude	Phase, degrees
1	0	×	270
2	0.2	4.9029	259
3	0.4	2.3212	248
4	0.786	1	232
5	0.8	0.9761	231
6	1	0.7071	225
7	4	0.0606	194
8	10	0.01	186
9	50	0.0004	181
10	100	0.0001	181
11	200	≈0	≈180

Example 1

Phase crossover frequency ω_p is very large (infinity). Gain at $\omega_p = 0$ and hence gain margin= $-20\log |G(j\omega_p)H(j\omega_p)| = \infty$

Gain crossover frequency $\omega_g = 0.786 \text{ rad/s}$ Phase angle corresponding to $\omega_g = 232^{\circ}$ Phase margin is $232^{\circ} - 180^{\circ} = 52^{\circ}$ The system is stable for the current value of K=1 and will become unstable when the value of K is increased infinite times. That means that the

system is always stable for all values of K

Example 2

Determine gain margin, phase margin and stability of the feedback system whose open-loop transfer function given by

$$G(s)H(s) = \frac{55}{s(s+2)(s+4)}$$

No.	Frequency	Magnitude	Phase, degrees	Example 2
1	1.5	3.4332	213	
2	2	2.1741	198	
3	2.5	1.4568	187	
4	2.83	1.1446	180	
5	3	1.017	177	
6	3.5	0.7334	169	
7	4.5	0.4122	156	
8	5	0.319	150	
9	5.5	0.2513	146	
10	6	0.201	142	
11	7	0.1339	136	Magnitude and phase
12	8	0.0932	131	of the open-loop frequenc
13	9	0.0673	126	transfer function (K=55)

Example 2

Gain crossover frequency =3 rad/s and the corresponding angle Of GH=177°

Phase margin=177-180=-3°

The system is unstable for K=55

Example 3

Determine gain margin, phase margin and stability of the feedback system whose open-loop transfer function given by

$$G(s)H(s) = \frac{K}{s^2(s+1)}$$

No.	Frequency, rad/s	Magnitude	Phase, degrees
1	0	∞	180
2	0.4	5.803	158
4	0.5	3.5777	153
5	0.8	1.2201	141
6	0.87	1	139
7	1	0.7071	135
8	2	0.1118	117
9	3	0.0351	108
10	4	0.0152	104
11	5	0.0078	101

Example 3

Example 3

The phase crossover frequency is 0 rad/s and the corresponding magnitude is infinity

$$M = -20\log |G(j\omega_p)H(j\omega_p)|$$
$$= -20\log |\infty| = -\infty \,\mathrm{dB}$$

The gain crossover frequency is 0.87 rad/s and the corresponding phase is 139⁰

Phase margin = $139^{\circ} - 180^{\circ} = -41^{\circ}$

The system is unstable for K=1. Since the gain margin is negative infinity, open-loop gain K has to be decreased infinite times for the system to be stable. Hence this system is unstable for all values of K

Conclusion