
An Assignment Statement
Used to store results of computation into a variable. Form:
variable_name = expression;
Example:
s = u*t + 0.5 * a * t * t;
Expression : can specify a formula involving constants or
variables, almost as in mathematics

• If variables are specified, their values are used.
• operators must be written explicitly
• multiplication, division have higher precedence than

addition, subtraction
• multiplication, division have same precedence
• addition, subtraction have same precedence
• operators of same precedence will be evaluated left to

right.
• Parentheses can be used with usual meaning

Examples

int x=2, y=3, p=4, q=5, r, s, t;
x = r*s; // disaster. r, s undefined
r = x*y + p*q;
 // r becomes 2*3 + 4*5 = 26
s = x*(y+p)*q;
 // s becomes 2*(3+4)*5 = 70
t = x – y + p – q;
 // equal precedence,
 // so evaluated left to right,
 // t becomes (((2-3)+4)-5 = -2

Arithmetic Between Different Types
Allowed

int x=2, y=3, z, w;
float q=3.1, r, s;
r = x; // representation changed

 // 2 stored as a float in r "2.0"
z = q; // store with truncation

// z takes integer value 3
s = x*q; // convert to same type,
 // then multiply
 // Which type?

Evaluating varA op varB
e.g. x*q

• if varA, varB have the same data type: the result will have

same data type

• if varA, varB have different data types: the result will have

more expressive data type

• int/short/unsigned int are less expressive than float/double

• shorter types are less expressive than longer types

Rules for storing numbers of one
type into variable of another type

• C++ does the “best possible”.
int x; float y;
x = 2.5;
y = 123456789;
• x will become 2, since it can hold only

integers. Fractional part is dropped.
• 123456789 cannot be precisely represented

in 24 bits, so something like 1.234567 e 8 will
get stored.

Integer Division

int x=2, y=3, p=4, q=5, u;

u = x/y + p/q;

cout << p/y;

• x/y : both are int. So truncation. Hence 0

• p/q : similarly 0

• p/y : 4/3 after truncation will be 1

• So the output is 1

More Examples of Division

int noosides=100, i_angle1, i_angle2;
i_angle1 = 360/noosides + 0.45; // 3
i_angle2 = 360.0/noosides + 0.45; // 4

float f_angle1, f_angle2;
f_angle1 = 360/noosides + 0.1; // 3.1
f_angle2 = 360.0/noosides + 0.1 // 3.7

An Example Limited Precision

float w, y=1.5, avogadro=6.022e23;
w = y + avogadro;

• Actual sum : 602200000000000000000001.5
• y + avogadro will have type float, i.e. about 7 digits of

precision.
• With 7 digits of precision (223), all digits after the 7th will

get truncated and the value of avogadro will be the
same as the value of y + avogadro

• w will be equal to avogadro
• No effect of addition!

Program Example
main_program{

 double centigrade, fahrenheit;

 cout <<“Give temperature in Centigrade: ”;

 cin >> centigrade;

 fahrenheit = centigrade * 9 / 5 + 32;

 cout << “In Fahrenheit: ” << fahrenheit

 << endl; // newline

}

Prompting for input is meaningless in Prutor because it is non-interactive

Re-Assignment

int p=3, q=4, r;
r = p + q; // 7 stored into r
cout << r << endl; // 7 printed as the value of r
r = p * q; // 12 stored into r (could be its
 // temporary location)
cout << r << endl; // 12 printed as the value of r

• Same variable can be assigned a value again
• When a variable appears in a statement, its value at

the time of the execution of the statement gets used

In C++ "=" is assignment not "equal"
int p=12;
p = p+1;

See it as: p p+1; // Let p become p+1

Rule for evaluation:

• FIRST evaluate the RHS and THEN store the result into the LHS
variable

• So 1 is added to 12, the value of p
• The result, 13, is then stored in p
• Thus p finally becomes 13

p = p + 1 is nonsensical in mathematics
“=” in C++ is different from “=” in mathematics

Repeat And Reassignment

main_program{
int i=1;

 repeat(10){
 cout << i << endl;
 i = i + 1;
 }
}

This program will print 1, 2,…, 10 on separate lines

Fundamental idiom

Sequence generation

• Can you make i take values 1, 3, 5, 7, …?

• Can you make i take values 1, 2, 4, 8, 16, …?

• Both can be done by making slight modifications to

previous program.

Composing The Two Idioms

Write a program to calculate n! given n.

main_program{
 int n, nfac=1, i=1;
 cin >> n;
 repeat(n){
 nfac = nfac * i;
 i = i + 1;
 }
 cout << nfac << endl;
}

Accummulation idiom

Sequence idiom

Finding Remainder

• x % y computes the remainder of dividing x by y
• Both x and y must be integer expressions
• Example

 d0 will equal 8 (the least significant digit of n)
 d1 will equal 7 (the second least significant digit of n)

int n=12345678, d0, d1;
d0 = n % 10; // 8
d1 = (n / 10) % 10; // 7

Some Additional Operators

• The fragment i = i + 1 is required very frequently, and so
can be abbreviated as i++
++ : increment operator. Unary

• Similarly we may write j-- which means j = j – 1
-- : decrement operator. Unary

Intricacies Of ++ and --

++ and –- can be written after or before the variable. Both
cause the variable to increment or decrement but with
subtle differences

int i=5, j=5, r, s;
 r = ++i;
 s = j++;
cout << "r= " << r << " s= " << s;

i,j both become 6 but r is 6 and s is 5.

++ and -– can be put inside expressions but not
recommended in good programming

Compound Assignment

The fragments of the form sum = sum + expression occur
frequently, and hence they can be shortened to sum +=
expression

Likewise you may have *=, -=, …

Example

int x=5, y=6, z=7, w=8;

x += z; // x becomes x+z = 12

y *= z+w; // y becomes y*(z+w) = 90

Blocks and Scope
• Code inside {} is called a

block.
• Blocks are associated with

repeats, but you may create
them otherwise too.

• You may declare variables
inside any block.

New summing program:
• The variable term is

defined close to where it is
used, rather than at the
beginning. This makes the
program more readable.

• But the execution of this
code is a bit involved.

// The summing program
// written differently.

main_program{
int s = 0;

 repeat(10){
 int term;
 cin >> term;
 s = s + term;
 }
 cout << s << term
<< endl;
}

Shadowing and scope
• Variables defined outside a block can be used

inside the block, if no variable of the same name
is defined inside the block.

• If a variable of the same name is defined, then
from the point of definition to the end of the block,
the newly defined variable gets used.

• The new variable is said to “shadow” the old
variable.

• The region of the program where a variable
defined in a particular definition can be used is
said to be the scope of the definition.

Example
main_program{
 int x=5;
 cout << x << endl; // prints 5
 {
 cout << x << endl; // prints 5
 int x = 10;
 cout << x << endl; // prints 10
 }
 cout << x << endl; // prints 5
}

Concluding Remarks

Variables are regions of memory which can store values
Variables have a type, as decided at the time of creation
Choose variable names to fit the purpose for which the

variable is defined
The name of the variable may refer to the region of memory

(if the name appears on the left hand side of an
assignment), or its value (if the name appears on the
right hand side of an assignment)

Further Remarks

Expressions in C++ are similar to those in mathematics,
except that values may get converted from integer to real
or vice versa and truncation might happen

Truncation may also happen when values get stored into a
variable

Sequence generation and accumulation are very common
idioms

Increment/decrement operators and compound assignment
operators also are commonly used (they are not found in
mathematics)

CS 101:
Computer Programming and

Utilization

Let Us Calculate Income Tax

Write a program to read income and print income tax, using
following rules
• If income ≤ 1,80,000, then tax = 0
• If income is between 180,000 and 500,000 then tax=

10% of (income - 180,000)
• If income is between 500,000 and 800,000, then tax =

32,000 + 20% of (income – 500,000)
• If income > 800,000, then tax = 92,000 + 30% of (income

– 800,000)
Cannot write tax calculation program using what we have
learnt so far

Outline

• Basic if statement
• if-else statement
• Most general if statement form
• switch statement
• Computig Logical expressions

Basic IF Statement

Form:
if (condition) consequent
condition: boolean expression
boolean : Should evaluate to true or false
consequent: C++ statement, e.g. assignment
If condition evaluates to true, then the consequent is
executed.
If condition evaluates to false, then consequent is ignored

Conditions

• Simple condition: exp1 relop exp2

relop : relational operator: <, <=, ==, >, >=, !=

less than, less than or equal, equal, greater than, greater
than or equal, not equal

• Condition is considered true if exp1 relates to exp2 as per
the specified relational operator relop

A Better Program for our Simple Problem

main_program {
float income, tax;

 cin >> income;
if (income <= 180000)

cout << “No tax owed.” << endl;
else

cout << “You owe tax.” << endl;
}
// Only one condition check
// Thus more efficient than previous

Program for the Simple Problem

main_program {
float income, tax;
cin >> income;
if (income <= 180000)

cout << “No tax owed” << endl;
if (income > 180000)

 cout << “You owe tax” << endl;
}
// Always checks both conditions
// If the first condition is true,
// then you know second must be false,
// and vice versa. Cannot be avoided
// using just the basic if statement

Flowchart

• Pictorial representation of a program

• Statements put inside boxes

• If box C will possibly be executed after box B, then put
an arrow from B to C

• Specially convenient for showing conditional execution,
because there can be more than one next statements

• Diamond shaped boxes are used for condition checks

Flowchart of the IF Statement

Condition

Previous Statement

 Consequent

New Statement

True

False

A More General Form of the IF
Statement

if (condition) consequent else alternate

The condition is first evaluated

If it is true, then consequent is executed

If the condition is false, then alternate is executed

Flowchart of the IF-ELSE statement

Condition

Previous Statement

 Alternate Consequent

True False

New Statement

Most General Form of the IF-ELSE
Statement

if (condition_1) consequent_1
else if (condition_2) consequent_2
…
else if (condition_n) consequent_n
else alternate

Evaluate conditions in order
Some condition true: execute the corresponding
consequent. Do not evaluate subsequent conditions
All conditions false: execute alternate

Flowchart of the General IF-ELSE
Statement (with 3 conditions)

New Statement

Condition 2

 Condition 3

Consequent 1

Consequent 2

Consequent 3 Alternate

True

True

False

False

Previous Statement

 Condition 1
True False

Tax Calculation Program

main_program {
 float tax,income;

cin >> income;
 if (income <= 180000) tax = 0;
 else if (income <= 500000)
 tax = (income – 180000) * 0.1;
 else if (income <= 800000)
 tax = (income – 500000) * 0.2 + 32000;
 else tax = (income – 800000) * 0.3 + 92000;
 cout << tax << endl;
}

Tax Calculation Flowchart

Income<=180000

Income<=500000

Income<=800000

tax = 0;

tax = (income -
180000) * 0.1;

tax = 32000 +
(income - 320000) *
0.2;

tax = 92000 +
(income - 800000) *
0.3;

Read Income

Print Tax

True

True

False

False

False

True

	cs101_Lecture4
	cs101_Lecture6

