A Minimization Algorithm

* Consider the minimization problem:
M =min,,||M
subject to

2 (M(i,j)-TG,j))° <o

i,])eQ

*

 There are many techniques to solve this problem
(http://perception.csl.illinois.edu/matrix-
rank/sample code.html)

e Out of these, we will study one method called
“singular value thresholding”.

http://perception.csl.illinois.edu/matrix-rank/sample_code.html

Ref: Cai et al, A singular value thresholding algorithm for matrix completion, SIAM Journal
on Optimization, 2010.

Singular Value Thresholding (SVT)

®" = SVT (T, 7 >0) Y = soft —threshold (Y € R™™;7)

{ {

YO =0eRY"™ Y =USV ' (using svd)

k=1 for (k =1: rank(Y))

while(convergence criterion not met) {

{ S(k,k) =max(0,S(k,k)—1);

™ = soft — threshold (Y “™; 7) } recholding

VO =YD R0k =k 4Ly _ " gy Eowms et
} i=1 (which we state w/o
o = % 1 proof).

¥ soft —threshold (Y ;7) =

arg min %HX ~Y|[’ +1]|X

*

Properties of SVT (stated w/o proof)

* The sequence {®,} converges to the true solution

of the problem below provided the step-sizes {0,}
all lie between 0 and 2.

M " =min,, z|M|, +0.5M|
subject to

v(I,)) €M,) =1I(, J)

* For large values of 7, this converges to the

solution of the original problem (i.e. without the
Frobenius norm term).

Properties of SVT (stated w/o proof)

* The matrices {®,} turn out to have low rank
(empirical observation — proof not
established).

* The matrices {Y,} also turn out to be sparse
(empirical observation — rigorous proof not
established).

* The SVT step does not require computation of
full SVD — we need only those singular vectors
whose singular values exceed t. There are
special iterative methods for that.

Results

* The SVT algorithm works very efficiently and is
easily implementable in MATLAB.

 The authors report reconstruction of a 30,000
by 30,000 matrix in just 17 minutes on a 1.86
GHz dual-core desktop with 3 GB RAM and
with MATLAB’s multithreading option enabled.

Results (Data without noise)

Unknown M Computational results

size (n X n) rank (r) m/d, m/n® | time(s) # iters relative error
10 6 0.12 23 117 1.64 x 10~%

1,000 x 1,000 50 4 0.39 196 114 1.59 x 10~*
100 3 0.57 501 129 1.68 x 10~*

10 6 0.024 147 123 1.73 x 10~ *

5,000 = 5,000 50 5 0.10 950 108 1.61 x 104
100 4 0.158 3,339 123 1.72 x 10~*

10 6 0.012 281 123 1.73 x 102

10,000 = 10, 000 50 5 0.050 2,096 110 1.65 x 10~*
100 4 0.080 7,059 127 1.79 x 10~*

10 6 0.006 588 124 1.73 x 10~ 2

20, 000 > 20, 000 50 5 0.025 4,581 111 1.66 x 10~*
30, 000 x 30, 000 10 6 0.004 1,030 125 1.73 x 10~

TABLE 5.1

Ezxperimental results for matriz completion. The rank r is the rank of the unknown matriz M.
m/dy is the ratio between the number of sampled entries and the number of degrees of freedom in
an n x n matriz of rank v (oversampling ratio), and m/n? is the fraction of observed entries. All
the computational results on the Tight are averaged over five runs.

https://arxiv.org/abs/0810.3286

https://arxiv.org/abs/0810.3286

Results (Noisy Data)

noise Unknown matrix M Computational results

ratio size (n x n) rank (r) m/d. m/n® | time(s) # iters relative error
10 6 0.12 10.8 51 0.78 x 10—~

102 1,000 x 1,000 50 4 0.39 87.7 48 0.95 x 10~ 2
100 3 0.57 216 50 1.13 x 1072
10 6 0.12 4.0 19 0.72 x 10~ !

10~1 | 1,000 x 1,000 50 4 0.39 33.2 17 0.89 x 101
100 3 0.57 85.2 17 1.01 x 10~!
10 6 0.12 0.9 3 0.52

1 1,000 x 1,000 50 4 0.39 7.8 3 0.63
100 3 0.57 34.8 3 0.69
TABLE 5.3

Simulation results for noisy data. The computational results are averaged over five runs. For
each test, the table shows the results of Algorithm 1 applied with an early stopping criterion

https://arxiv.org/abs/0810.3286

https://arxiv.org/abs/0810.3286

Results on real data

e Dataset consists of a matrix M of geodesic
distances between 312 cities in the
USA/Canada.

* This matrix is of approximately low-rank (in
fact, the relative Frobenius error between M
and its rank-3 approximation is 0.1159).

* 70% of the entries of this matrix (chosen
uniformly at random) were blanked out.

Results on real data

Algorithm | rank ki time | [|[M — M;||¢/|M|r ||M — X¥i|g/||M|r
1 58 1.4 0.4091 0.4170
SVT 2 190 4.8 0.1895 0.1980
3 343 8.9 0.1159 0.1252
1 47 2.6 0.4091 0.4234
(3.6) 2 166 7.2 0.1895 0.1998
3 310 13.3 0.1159 0.1270
TABLE 5.5

Speed and accuracy of the completion of the city-to-city distance matriz.

M;||p /|| M| g is the best possible relative error achieved by a matriz of rank i.

https://arxiv.org/abs/0810.3286

Here, ||M —

https://arxiv.org/abs/0810.3286

Algorithm for Robust PCA

The algorithm uses the augmented Lagrangian
technique.

See

https://en.wikipedia.org/wiki/Augmented Lag
rangian method and https://www.him.uni-
bonn.de/fileadmin/him/Section6 HIM v1.pdf
Suppose you want to solve:

min f (X) w.r.t.x
st.Viel,c.(x)=0

https://en.wikipedia.org/wiki/Augmented_Lagrangian_method
https://www.him.uni-bonn.de/fileadmin/him/Section6_HIM_v1.pdf

Algorithm for Robust PCA

* Suppose you want to solve:
min f (X) w.r.t.x
st.Viel,c(x)=0

 The augmented Lagrangian method (ALM)
adopts the following iterative updates:

x, =argmin, f(x) @m

A =2 = 1S (%) l

Augmentation term Lagrangian term

ALM: Some intuition

 What is the intuition behind the update of the
Lagrange parameters {A;}?

* The problem is:

min f (x) _ min, max , f (x) + A'c(x)
st.Viel,c(x)=0 €(X)=(C,(X),Cy(X),..., G, (X))

The maximum w.r.t. A will be o= unless the
constraint is satisfied. Hence these
problems are equivalent.

ALM: Some intuition

* The problem is:

min f (x) min, max , f (x) + A'c(x)

stVielg(x)=0 c(X)=(c,(x),C,(X),e., Gy (X))

Due to non-smoothness of the max function, the equivalence has little
computational benefit. We smooth it by adding another term that penalizes
deviations from a prior estimate of the A parameters.

minxmaxif(x)+,1tc(x)+H al m—) 7 =7~ 4c(X)

:u Maximization w.r.t. A
is now easy

ALM: Some inutuion — inequality
constraints

min f (x) min, max ., f (x) —4'c(x)
st.Vielc(x)>0 — C(X) = (C,(X), €, (X).nus Gy (X))

minxmaxif(x)+,1tc(x)+H _H m)) = max(2 — 1(x),0)

Maximization w.r.t. A
is now easy

Theorem 1 (Informal Statement)

* Consider a matrix M of size n, by n, which is the sum of a
“sufficiently low-rank” component L and a “sufficiently
sparse” component S whose support is uniformly
randomly distributed in the entries of M.

* Then the solution of the following optimization problem
(known as principal component pursuit) yields exact
estimates of L and S with “very high” probability:

\/max(My, nz) This is a convex
subjecttoL+S = M. optimization

- problem.
Note :[|S[, = > > |S;|

i=1 j=1

E(L',S") = min(L,S)HLH* +

Algorithm for Robust PCA

* [n our case, we seek to optimize:
(L,S,Y) = |L|.+ S| M—-L-S)+ %nﬂf —L—S|%.

. . \
e Basic algorithm: Lagrange matrix

(L, S) =argming ¢ I(L,S,Y,), Yy =Y+ (M -1 =35,)

. ~ 1
arg qu!ﬂ I(L,S5,Y) = S,h,u‘l (M —L+pY). Update of S using
B soft-thresholding
Srlz] = sgn(z) max(|z| — 7,0)

argminl(L,5,Y) =D, 1(M -5+ ny). Update of L using
L singular-value
soft-thresholding

DA(X)=US(SV* X = USV*

Alternating Minimization Algorithm for Robust PCA

. Initialize: Sp= Yy =0, = 0.

while not converged do
compute Lgy 1 =D, 1(M — 5 + Y5
compute Sp 1 = Sy, -1 (M — Ly + 1Y)
compute Yp 1 =Y + (M — L1 — Sk1):

end while

output: L.S.

https://statweb.stanford.edu/~candes/papers/RobustPCA.pdf

Results

Dimension n | rank(Lg) | ||Sollo l‘ank(ﬁ) HSHO % # SVD | Time(s)
500 25 12,500 25 12,500 | 1.1 x 107 16 2.9
1,000 50 50,000 50 50,000 | 1.2 x 1079 16 12.4
2.000 100 200,000 100 200,000 | 1.2 x 107° 16 61.8
3,000 250 | 450,000 | 250 | 450,000 | 23x 100 | 15 185.2

rank(Lg) = 0.05 x n, [|Spllo = 0.05 x n?.

Dimension n | rank(Lo) | [[Sollo | rank(L) 1Sl % # SVD | Time(s)
500 25 25,000 25 25,000 | 1.2 x 107° 17 4.0
1,000 50 100,000 50 100,000 | 2.4 x 107° 16 13.7
2.000 100 400,000 100 400,000 | 2.4 x 107° 16 64.5
3,000 150 900.000 150 900,000 | 2.5 x 107° 16 191.0

rank(Lg) = 0.05 x n, [|Sollo = 0.10 x n?.

Table 1: Correct recovery for random problems of varying size. Here, Lo = XY * € R™»*"
with X, Y € R**"; XY have entries i.i.d. N'(0,1/n). Sy € {—1,0,1}"*™ has support chosen
uniformly at random and independent random signs; ||Sp||p is the number of nonzero entries
in Sg. Top: recovering matrices of rank 0.05 x n from 5% gross errors. Bottom: recovering
matrices of rank 0.05 x n from 10% gross errors. In all cases, the rank of Ly and fp-norm of
So are correctly estimated. Moreover, the number of partial singular value decompositions (#

SVD) required to solve PCP is almost constant.

https://statweb.stanford.edu/~candes/papers/RobustPCA.pdf

(Compressive) Low Rank Matrix
Recovery

Compressive RPCA: Algorithm
and an Application

Primarily based on the paper:

Waters et al, “SpaRCS: Recovering Low-Rank
and Sparse Matrices

from Compressive Measurements”, NIPS 2011

Problem statement

e Let M be a matrix which is the sum of low rank
matrix L and sparse matrix S.

* We observed compressive measurements of
M in the following form:

y=A(L+S),LeR™ SeR" yeR" m<nn,
A = linear operatoracting/map on M
Retrieve L, S given A,y

Scenarios

* M could be a matrix representing a video —
each column of M is a vectorized frame from
the video.

* M could also be a matrix representing a
hyperspectral image — each column is the
vectorized form of a slice at a given
wavelength.

* Robust Matrix completion — a special form of a
compressive L+S recovery problem.

Objective function: SpaRCS

(P1) min |y — AL+ S)||2 subjectto rank(L) < r, [[vec(S)|lo < K.

| —

Free parameters

SpaRCS = sparse and low rank decomposition via compressive
sampling

SparCS Algorithm

Algorithm 1: (L, §} = SpaRCS (y, A, A", K., 7€)

Initialization: k < 1, Lo <~ 0,Sg ¢ 0, U, <« 0, Ug <« (), wp ¢ y
while ||w_1|2 > edo
Compute signal proxy:

P« A*(wp_1) https://papers.nips.cc/pap
Suppgrt identification: R er/4438-sparcs-recovering-

Wy, svd(P;2r); ¥g < supp(P;2K) low-rank-and-sparse-
Support merger: matrices-from-

Wy o U U P W Ws | Us compressive-

Least squares estimation:

BY ¢ Wi (y — A(Sk1)): BS « Ty — ALy 1))
Support pruning:

(Lk W) « svd(BY:r); (gk Wg) < supp(BS; K)
Update residue:

wi + v — A(Lg + S

measurements.pdf

end

L=L; :S=S,,

Very simple to implement; but requires tuning of K, r parameters;
convergence guarantees not established.

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Results: Phase transition

rFeeey

0.25 05 0.75 1 0.25 05 0.75 0.25 05 : 0.25 05) 1 0.25 05 0.75
pr p."N pa’N pr‘N pf‘N
Figure 1: Phase transitions for a recovery problem of size Ny = Ny = N = 512. Shown are

aggregate results over 20 Monte-Carlo runs at each specification of », iK', and p. Black indicates
recovery failure, while white indicates recovery success.

https://papers.nips.cc/paper/4438-sparcs-
recovering-low-rank-and-sparse-matrices-
from-compressive-measurements.pdf

Code:
https://www.ece.rice.edu/~aew?2/sparcs.html

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf
https://www.ece.rice.edu/~aew2/sparcs.html

Results: Video CS

_#

! . -)
v 2] o2 1 |
=~ | @ | = = | - | _SN
= e = =& - = = - B /% N B a5 3 N =
e R - o~) e . t e
i : SESICE =~ L ATR - §
3 Y 3 A\ ! “ NN
= o] ~ —¥] | . <o -
A = = | 3 -~ > ~J
3 o - G -7 - B - s
: \~ -

Figure 3: SpaRCS recovery results on a 128 x 128 x 201 video sequence. The video sequence is
reshaped into an N1 x N matrix with N1 = 1282 and No = 201. (a) Ground truth for several
frames. (b) Estimated low-rank component L. (c¢) Estimated sparse component S. The recovery
SNR is 31.2 dB at the measurement ratio p/(N1N3) = 0.15. The recovery is accurate in spite of the
measurement operator .4 working independently on each frame.

Follows Rice SPC model, independent compressive measurements on each frame
Of the matrIX M representlng the Vldeo https://papers.nips.cc/paper/4438-sparcs-

recovering-low-rank-and-sparse-matrices-
from-compressive-measurements.pdf

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Results: Video CS

Figure 4: SpaRCS recovery results on a 64 x 64 x 234 video sequence. The video sequence is
reshaped into an N7 x Ny matrix with N7 = 642 and Ny = 234. (a) Ground truth for several frames.
(b) Recovered frames. The recovery SNR is 23.9 dB at the measurement ratio of p/(N1N5) = 0.33.
The recovery is accurate in spite of the changing illumination conditions.

Follows Rice SPC model, independent compressive measurements on each frame
of the matrix M representing the video.

https://papers.nips.cc/paper/4438-sparcs-
recovering-low-rank-and-sparse-matrices-
from-compressive-measurements.pdf

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Results: Hyperspectral CS

L+ .

m‘M L+S‘

10- M — L

Figure 5: SpaRCS recovery results on a 128 x 128 x 128 lnpelspeuml data cube. The hyperspectral
data 1s Ieshaped Into an ‘\1 x No matrix with N; = 1282 and N, = 128. Each image pane
corresponds to a different spectral band. (a) Ground truth. (b) Recovered images. (c) Residual
error using both the low-rank and sparse component. (d) Residual error using only the low-rank
component. The measurement ratio is p/(N1N3) = 0.15.

(d)

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices- R | ce S PC m Od el Of CS measureme ntS on
from-compressive-measurements.pdf eve ry Spect ral ba nd

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Results: Robust matrix completion

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-
matrices-from-compressive-measurements.pdf

8 RN] =GV X 2 ' ' ' ' ' ' Bl sparcs
P A of 1 - - _ EcsIT
60O SRR SR SpaHCS = _— Ny d[JCVX
= L N {=—=CSIT E 15f Il OptSpace
E 40 *(jptapace E |
o | i -\ IR =
% 20[........................ 8 0.5+
s >
bl > 0 B - - T g g
o]
L r r r
—20 -2 —1 0 -] ' - - ' ' ' '
10 10 10 10 11000 1100 1/50 1/25 110 1/5 114 1/3
K/p K/p
(a) Performance (b) Timing plot

Figure 7: Comparison of several algorithms for the robust matrix completion problem. (a) RSNR
averaged over 10 Monte-Carlo runs for an N x N matrix completion problem with N = 128,
r = 1, and p/N? = 0.2. Non-robust formulations, such OptSpace, fail. SpaRCS acheives perfor-
mance close to that of the convex solver (CVX). (b) Comparison of convergence times for the various
algorithms. SpaRCS converges in only a fraction of the time required by the other algorithms.

min ||L||« + Alls|l1 subjecttoLg +s=y

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Theorem for Compressive PCP

Theorem 2.1 (Compressive PCP Recovery). Let Lo, Sog € R™*™, with m > n, and suppose
that Lo # 0 is a rank-r, p-mcoherent matriz with
Cpll

r < (2.4)

3
plog®m

and sign (Sg) is id Bernoulli- Rademacher with nonzero probability p < c,. Let @ C R™*™ be a
random subspace of dimension

dim(Q) > Cqo - (pmn+mr) - log® m (2.5)

distributed according to the

. probabilistically independent of sign(Sy). Then with
probability at least 1 — Cm™ in (s

1(50), Q). the solution to
minimize ||Ll|, + A\S|l; subject to Pg[L + S] = Po[Lo + So] (2.6)

with A = 1/y/m s unique, and equal to
stants.

(Lo, So). Above, c,,c,.Cq,C are positive numerical con-

Q is obtained from the linear span
of different independent N(0,1)
matrices with iid entries

Wright et al, “Compressive Principal Component Pursuit”
http://yima.csl.illinois.edu/psfile/CPCP.pdf

http://yima.csl.illinois.edu/psfile/CPCP.pdf

Summary

Low rank matrix completion: motivation, key
theorems, numerical results

Algorithm for low rank matrix completion
Robust PCA

(Compressive) low rank matrix recovery
Compressive RPCA

Several papers linked on moodle

