A Minimization Algorithm

Consider the minimization problem:

```
M^* = \min_{M} ||M||_*
subject to
\sum_{(i,j)\in\Omega} (M(i,j) - \Gamma(i,j))^2 \le \delta
```

- There are many techniques to solve this problem (http://perception.csl.illinois.edu/matrix-rank/sample_code.html)
- Out of these, we will study one method called "singular value thresholding".

Ref: Cai et al, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 2010.

Singular Value Thresholding (SVT)

```
\Phi^* = SVT(\Gamma, \tau > 0)
Y^{(0)} = 0 \in R^{n_1 \times n_2}
k = 1
while(convergence criterion not met)
\Phi^{(k)} = soft - threshold(Y^{(k-1)}; \tau)
Y^{(k)} = Y^{(k-1)} + \delta_k P_{\Omega}(\Gamma - \Phi^{(k)}); k = k+1; \quad \hat{Y} = \sum_{k=1}^{rank(Y)} S(k, k) u_k v_k^t
\Phi^* = \Phi^{(k)}:
```

```
\hat{Y} = soft - threshold (Y \in \mathbb{R}^{n_1 \times n_2}; \tau)
Y = USV^{T} (using svd)
for (k = 1 : rank(Y))
S(k,k) = \max(0, S(k,k) - \tau);
                                         The soft-
                                         thresholding
                                          procedure obeys the
                                         following property
                                          (which we state w/o
                                         proof).
```

 $soft - threshold(Y; \tau) =$ $\arg \min_{X} \frac{1}{2} ||X - Y||_{F}^{2} + \tau ||X||_{*}$

Properties of SVT (stated w/o proof)

• The sequence $\{\Phi_k\}$ converges to the true solution of the problem below provided the step-sizes $\{\delta_k\}$ all lie between 0 and 2.

$$M^* = \min_{M} \tau ||M||_* + 0.5 ||M||_F^2$$

subject to
$$\forall (i, j) \in \Omega, M(i, j) = \Gamma(i, j)$$

• For large values of τ , this converges to the solution of the original problem (i.e. without the Frobenius norm term).

Properties of SVT (stated w/o proof)

- The matrices $\{\Phi_k\}$ turn out to have low rank (empirical observation proof not established).
- The matrices $\{Y_k\}$ also turn out to be sparse (empirical observation rigorous proof not established).
- The SVT step does not require computation of full SVD – we need only those singular vectors whose singular values exceed τ. There are special iterative methods for that.

Results

 The SVT algorithm works very efficiently and is easily implementable in MATLAB.

 The authors report reconstruction of a 30,000 by 30,000 matrix in just 17 minutes on a 1.86 GHz dual-core desktop with 3 GB RAM and with MATLAB's multithreading option enabled.

Results (Data without noise)

U	$\overline{\mathrm{nknown}}$	Computational results				
size $(n \times n)$	$\operatorname{rank}(r)$	m/d_r	m/n^2	time(s)	# iters	relative error
	10	6	0.12	23	117	1.64×10^{-4}
$1,000\times 1,000$	50	4	0.39	196	114	1.59×10^{-4}
	100	3	0.57	501	129	1.68×10^{-4}
	10	6	0.024	147	123	1.73×10^{-4}
$5,000\times5,000$	50	5	0.10	950	108	1.61×10^{-4}
	100	4	0.158	3,339	123	1.72×10^{-4}
	10	6	0.012	281	123	1.73×10^{-4}
$10,000 \times 10,000$	50	5	0.050	2,096	110	1.65×10^{-4}
	100	4	0.080	7,059	127	1.79×10^{-4}
$20,000 \times 20,000$	10	6	0.006	588	124	1.73×10^{-4}
20,000 × 20,000	50	5	0.025	4,581	111	1.66×10^{-4}
$30,000 \times 30,000$	10	6	0.004	1,030	125	1.73×10^{-4}

Table 5.1

Experimental results for matrix completion. The rank r is the rank of the unknown matrix \mathbf{M} , m/d_r is the ratio between the number of sampled entries and the number of degrees of freedom in an $n \times n$ matrix of rank r (oversampling ratio), and m/n^2 is the fraction of observed entries. All the computational results on the right are averaged over five runs.

https://arxiv.org/abs/0810.3286

Results (Noisy Data)

noise	Unk	х М	Computational results				
ratio	size $(n \times n)$	rank(r)	m/d_r	m/n^2	time(s)	# iters	relative error
		10	6	0.12	10.8	51	0.78×10^{-2}
10^{-2}	$1,000\times 1,000$	50	4	0.39	87.7	48	0.95×10^{-2}
		100	3	0.57	216	50	1.13×10^{-2}
		10	6	0.12	4.0	19	0.72×10^{-1}
10^{-1}	$1,000\times 1,000$	50	4	0.39	33.2	17	0.89×10^{-1}
		100	3	0.57	85.2	17	1.01×10^{-1}
		10	6	0.12	0.9	3	0.52
1	$1,000\times1,000$	50	4	0.39	7.8	3	0.63
		100	3	0.57	34.8	3	0.69

Table 5.3

Simulation results for noisy data. The computational results are averaged over five runs. For each test, the table shows the results of Algorithm 1 applied with an early stopping criterion

https://arxiv.org/abs/0810.3286

Results on real data

- Dataset consists of a matrix M of geodesic distances between 312 cities in the USA/Canada.
- This matrix is of approximately low-rank (in fact, the relative Frobenius error between M and its rank-3 approximation is 0.1159).
- 70% of the entries of this matrix (chosen uniformly at random) were blanked out.

Results on real data

Algorithm	rank	k_i	$_{ m time}$	$\ oldsymbol{M} - oldsymbol{M}_i\ _F/\ oldsymbol{M}\ _F$	$\ oldsymbol{M} - oldsymbol{X}^{k_i}\ _F/\ oldsymbol{M}\ _F$
	1	58	1.4	0.4091	0.4170
SVT	2	190	4.8	0.1895	0.1980
	3	343	8.9	0.1159	0.1252
	1	47	2.6	0.4091	0.4234
(3.6)	2	166	7.2	0.1895	0.1998
	3	310	13.3	0.1159	0.1270

Table 5.5

Speed and accuracy of the completion of the city-to-city distance matrix. Here, $\|\mathbf{M} - \mathbf{M}_i\|_F / \|\mathbf{M}\|_F$ is the best possible relative error achieved by a matrix of rank i.

https://arxiv.org/abs/0810.3286

Algorithm for Robust PCA

- The algorithm uses the augmented Lagrangian technique.
- See
 https://en.wikipedia.org/wiki/Augmented Lag rangian method and https://www.him.unibonn.de/fileadmin/him/Section6 HIM v1.pdf
- Suppose you want to solve:

```
min f(x) w.r.t.x
s.t. \forall i \in I, c_i(x) = 0
```

Algorithm for Robust PCA

Suppose you want to solve:

$$\min f(x) \text{ w.r.t.} x$$
$$\text{s.t.} \forall i \in I, c_i(x) = 0$$

 The augmented Lagrangian method (ALM) adopts the following iterative updates:

$$x_{k} = \arg\min_{x} f(x) + \underbrace{\mu_{k} \sum_{i \in I} c_{i}^{2}(x)}_{i \in I} + \underbrace{\sum_{i \in I} \lambda_{i} c_{i}(x)}_{i \in I}$$

$$\lambda_{i} = \lambda_{i} - \mu_{k} c_{i}(x_{k})$$
Augmentation term
$$Lagrangian term$$

ALM: Some intuition

• What is the intuition behind the update of the Lagrange parameters $\{\lambda_i\}$?

The problem is:

$$\min_{x} f(x)$$

$$\text{s.t.} \forall i \in I, c_i(x) = 0$$

$$\min_{x} \max_{\lambda} f(x) + \lambda^t c(x)$$

$$c(x) = (c_1(x), c_2(x), ..., c_{|I|}(x))$$

The maximum w.r.t. λ will be ∞ unless the constraint is satisfied. Hence these problems are equivalent.

ALM: Some intuition

The problem is:

$$\min f(x) = \min_{x} \max_{\lambda} f(x) + \lambda^{t} c(x)$$

s.t. $\forall i \in I, c_{i}(x) = 0$
$$c(x) = (c_{1}(x), c_{2}(x), ..., c_{|I|}(x))$$

Due to non-smoothness of the max function, the equivalence has little computational benefit. We smooth it by adding another term that penalizes deviations from a prior estimate of the λ parameters.

$$\min_{x} \max_{\lambda} f(x) + \lambda^{t} c(x) + \frac{\|\lambda - \overline{\lambda}\|^{2}}{2\mu}$$
Maximization w.r.t. λ is now easy

ALM: Some inutuion – inequality constraints

$$\min f(x)$$

$$\text{s.t.} \forall i \in I, c_i(x) \ge 0$$

$$\min_{x} \max_{\lambda \ge 0} f(x) - \lambda^t c(x)$$

$$c(x) = (c_1(x), c_2(x), ..., c_{|I|}(x))$$

$$\min_{x} \max_{\lambda} f(x) + \lambda^{t} c(x) + \frac{\|\lambda - \overline{\lambda}\|^{2}}{2\mu}$$

$$\lambda = \max(\overline{\lambda} - \mu c(x), 0)$$
Maximization w.r.t. λ
is now easy

Theorem 1 (Informal Statement)

- Consider a matrix \mathbf{M} of size n_1 by n_2 which is the sum of a "sufficiently low-rank" component \mathbf{L} and a "sufficiently sparse" component \mathbf{S} whose support is uniformly randomly distributed in the entries of \mathbf{M} .
- Then the solution of the following optimization problem (known as <u>principal component pursuit</u>) yields <u>exact</u> <u>estimates</u> of L and S with "very high" probability:

$$E(L', S') = \min_{(L,S)} ||L||_* + \frac{1}{\sqrt{\max(n_1, n_2)}} ||S||_1$$

subject to $L + S = M$.

Note:
$$||S||_1 = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} |S_{ij}|$$

This is a convex optimization problem.

Algorithm for Robust PCA

• In our case, we seek to optimize:

$$l(L,S,Y) = \|L\|_* + \lambda \|S\|_1 + (Y)M - L - S) + \frac{\mu}{2} \|M - L - S\|_F^2.$$

• Basic algorithm:

Lagrange matrix

$$(L_k, S_k) = \arg\min_{(L,S)} l(L, S, Y_k), Y_{k+1} = Y_k + \mu(M - L_k - S_k)$$

$$\arg\min_{S} l(L, S, Y) = \mathcal{S}_{\lambda\mu^{-1}}(M - L + \mu^{-1}Y).$$

$$S_{\tau}[x] = \operatorname{sgn}(x) \max(|x| - \tau, 0)$$

Update of **S** using soft-thresholding

$$\arg\min_{L} l(L, S, Y) = \mathcal{D}_{\mu^{-1}}(M - S + \mu^{-1}Y).$$

$$\mathcal{D}_{\tau}(X) \stackrel{\cdot}{=} U \mathcal{S}_{\tau}(\Sigma) V^* \qquad X \stackrel{\cdot}{=} U \stackrel{\cdot}{\Sigma} V^*$$

Update of **L** using singular-value soft-thresholding

Alternating Minimization Algorithm for Robust PCA

- 1: initialize: $S_0 = Y_0 = 0, \mu > 0$.
- 2: while not converged do
- 3: compute $L_{k+1} = \mathcal{D}_{\mu^{-1}}(M S_k + \mu^{-1}Y_k);$
- 4: compute $S_{k+1} = S_{\lambda\mu^{-1}}(M L_{k+1} + \mu^{-1}Y_k);$
- 5: compute $Y_{k+1} = Y_k + \mu(M L_{k+1} S_{k+1});$
- 6: end while
- 7: output: L, S.

Results

Dimension n	$\operatorname{rank}(L_0)$	$ S_0 _0$	$\operatorname{rank}(\hat{L})$	$\ \hat{S}\ _0$	$\frac{\ \hat{L} - L_0\ _F}{\ L_0\ _F}$	# SVD	Time(s)
500	25	12,500	25	12,500	1.1×10^{-6}	16	2.9
1,000	50	50,000	50	50,000	1.2×10^{-6}	16	12.4
2,000	100	200,000	100	200,000	1.2×10^{-6}	16	61.8
3,000	250	450,000	250	450,000	2.3×10^{-6}	15	185.2

$$rank(L_0) = 0.05 \times n, ||S_0||_0 = 0.05 \times n^2.$$

Dimension n	$\operatorname{rank}(L_0)$	$ S_0 _0$	$\operatorname{rank}(\hat{L})$	$\ \hat{S}\ _0$	$\frac{\ \hat{L} - L_0\ _F}{\ L_0\ _F}$	# SVD	Time(s)
500	25	25,000	25	25,000	1.2×10^{-6}	17	4.0
1,000	50	100,000	50	100,000	2.4×10^{-6}	16	13.7
2,000	100	400,000	100	400,000	2.4×10^{-6}	16	64.5
3,000	150	900,000	150	900,000	2.5×10^{-6}	16	191.0

 $rank(L_0) = 0.05 \times n, ||S_0||_0 = 0.10 \times n^2.$

Table 1: Correct recovery for random problems of varying size. Here, $L_0 = XY^* \in \mathbb{R}^{n \times n}$ with $X, Y \in \mathbb{R}^{n \times r}$; X, Y have entries i.i.d. $\mathcal{N}(0, 1/n)$. $S_0 \in \{-1, 0, 1\}^{n \times n}$ has support chosen uniformly at random and independent random signs; $||S_0||_0$ is the number of nonzero entries in S_0 . Top: recovering matrices of rank $0.05 \times n$ from 5% gross errors. Bottom: recovering matrices of rank $0.05 \times n$ from 10% gross errors. In all cases, the rank of L_0 and ℓ_0 -norm of S_0 are correctly estimated. Moreover, the number of partial singular value decompositions (#SVD) required to solve PCP is almost constant.

(Compressive) Low Rank Matrix Recovery

Compressive RPCA: Algorithm and an Application

Primarily based on the paper:

Waters et al, "SpaRCS: Recovering Low-Rank and Sparse Matrices

from Compressive Measurements", NIPS 2011

Problem statement

- Let M be a matrix which is the sum of low rank matrix L and sparse matrix S.
- We observed compressive measurements of M in the following form:

$$y = \mathcal{A}(L+S), L \in \mathbb{R}^{n_1 \times n_2}, S \in \mathbb{R}^{n_1 \times n_2}, y \in \mathbb{R}^m, m \leq n_1 n_2$$

 $\mathcal{A} = \text{linear operator acting/map on } M$
Retrieve L, S given \mathcal{A}, y

Scenarios

- M could be a matrix representing a video each column of M is a vectorized frame from the video.
- M could also be a matrix representing a hyperspectral image – each column is the vectorized form of a slice at a given wavelength.
- Robust Matrix completion a special form of a compressive L+S recovery problem.

Objective function: SpaRCS

(P1) min $\|\mathbf{y} - \mathcal{A}(\mathbf{L} + \mathbf{S})\|_2$ subject to $\operatorname{rank}(\mathbf{L}) \le r$, $\|\operatorname{vec}(\mathbf{S})\|_0 \le K$.

Free parameters

SpaRCS = sparse and low rank decomposition via compressive sampling

SparCS Algorithm

Algorithm 1: $(\widehat{\mathbf{L}}, \widehat{\mathbf{S}}) = \text{SpaRCS}(\mathbf{y}, \mathcal{A}, \mathcal{A}^*, K, r, \epsilon)$

Initialization:
$$k \leftarrow 1$$
, $\widehat{\mathbf{L}}_0 \leftarrow \mathbf{0}$, $\widehat{\mathbf{S}}_0 \leftarrow \mathbf{0}$, $\Psi_{\mathbf{L}} \leftarrow \emptyset$, $\Psi_{\mathbf{S}} \leftarrow \emptyset$, $\mathbf{w}_0 \leftarrow \mathbf{y}$ while $\|\mathbf{w}_{k-1}\|_2 \ge \epsilon \ \mathbf{do}$

Compute signal proxy:

$$\mathbf{P} \leftarrow \mathcal{A}^*(\mathbf{w}_{k-1})$$

Support identification:

$$\widehat{\Psi}_{\mathbf{L}} \leftarrow \operatorname{svd}(\mathbf{P}; 2r); \widehat{\Psi}_{\mathbf{S}} \leftarrow \operatorname{supp}(\mathbf{P}; 2K)$$

Support merger:

$$\widetilde{\widehat{\Psi}}_{\mathrm{L}} \leftarrow \widehat{\widehat{\Psi}}_{\mathrm{L}} igcup \Psi_{\mathrm{L}}; \widetilde{\Psi}_{\mathrm{S}} \leftarrow \widehat{\Psi}_{\mathrm{S}} igcup \Psi_{\mathrm{S}}$$

Least squares estimation:

$$\mathbf{B}^{\mathbf{L}} \leftarrow \widetilde{\mathbf{\Psi}}_{\mathbf{L}}^{\dagger}(\mathbf{y} - \mathcal{A}(\widehat{\mathbf{S}}_{k-1})); \mathbf{B}^{\mathbf{S}} \leftarrow \widetilde{\mathbf{\Psi}}_{\mathbf{S}}^{\dagger}(\mathbf{y} - \mathcal{A}(\widehat{\mathbf{L}}_{k-1}))$$

Support pruning:

$$(\widehat{\mathbf{L}}_k, \, \Psi_{\mathbf{L}}) \leftarrow \operatorname{svd}(\mathbf{B}^{\mathbf{L}}; r); (\widehat{\mathbf{S}}_k, \, \Psi_{\mathbf{S}}) \leftarrow \operatorname{supp}(\mathbf{B}^{\mathbf{S}}; K)$$

Update residue:

$$\mathbf{w}_k \leftarrow \mathbf{y} - \mathcal{A}(\widehat{\mathbf{L}}_k + \widehat{\mathbf{S}}_k)$$

$$k \leftarrow k + 1$$

end

$$\widehat{\mathbf{L}} = \widehat{\mathbf{L}}_{k-1}; \widehat{\mathbf{S}} = \widehat{\mathbf{S}}_{k-1}$$

Very simple to implement; but requires tuning of *K*, *r* parameters; convergence guarantees not established.

https://papers.nips.cc/pap er/4438-sparcs-recoveringlow-rank-and-sparse-

matrices-fromcompressive-

measurements.pdf

Results: Phase transition

Figure 1: Phase transitions for a recovery problem of size $N_1 = N_2 = N = 512$. Shown are aggregate results over 20 Monte-Carlo runs at each specification of r, K, and p. Black indicates recovery failure, while white indicates recovery success.

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Code:

https://www.ece.rice.edu/~aew2/sparcs.html

Results: Video CS

Figure 3: SpaRCS recovery results on a $128 \times 128 \times 201$ video sequence. The video sequence is reshaped into an $N_1 \times N_2$ matrix with $N_1 = 128^2$ and $N_2 = 201$. (a) Ground truth for several frames. (b) Estimated low-rank component **L**. (c) Estimated sparse component **S**. The recovery SNR is 31.2 dB at the measurement ratio $p/(N_1N_2) = 0.15$. The recovery is accurate in spite of the measurement operator \mathcal{A} working independently on each frame.

Follows Rice SPC model, independent compressive measurements on each frame of the matrix **M** representing the video.

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-

from-compressive-measurements.pdf

Results: Video CS

Figure 4: SpaRCS recovery results on a $64 \times 64 \times 234$ video sequence. The video sequence is reshaped into an $N_1 \times N_2$ matrix with $N_1 = 64^2$ and $N_2 = 234$. (a) Ground truth for several frames. (b) Recovered frames. The recovery SNR is 23.9 dB at the measurement ratio of $p/(N_1N_2) = 0.33$. The recovery is accurate in spite of the changing illumination conditions.

Follows Rice SPC model, independent compressive measurements on each frame of the matrix **M** representing the video.

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Results: Hyperspectral CS

Figure 5: SpaRCS recovery results on a $128 \times 128 \times 128$ hyperspectral data cube. The hyperspectral data is reshaped into an $N_1 \times N_2$ matrix with $N_1 = 128^2$ and $N_2 = 128$. Each image pane corresponds to a different spectral band. (a) Ground truth. (b) Recovered images. (c) Residual error using both the low-rank and sparse component. (d) Residual error using only the low-rank component. The measurement ratio is $p/(N_1N_2) = 0.15$.

<u>natrices-</u>

Rice SPC model of CS measurements on every spectral band

Results: Robust matrix completion

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf

Figure 7: Comparison of several algorithms for the robust matrix completion problem. (a) RSNR averaged over 10 Monte-Carlo runs for an $N \times N$ matrix completion problem with N=128, r=1, and $p/N^2=0.2$. Non-robust formulations, such OptSpace, fail. SpaRCS acheives performance close to that of the convex solver (CVX). (b) Comparison of convergence times for the various algorithms. SpaRCS converges in only a fraction of the time required by the other algorithms.

$$\min \|\mathbf{L}\|_* + \lambda \|\mathbf{s}\|_1$$
 subject to $\mathbf{L}_{\Omega} + \mathbf{s} = \mathbf{y}$

Theorem for Compressive PCP

Theorem 2.1 (Compressive PCP Recovery). Let $L_0, S_0 \in \mathbb{R}^{m \times n}$, with $m \geq n$, and suppose that $L_0 \neq 0$ is a rank-r, μ -incoherent matrix with

$$r \le \frac{c_r n}{\mu \log^2 m},\tag{2.4}$$

and sign (S_0) is iid Bernoulli-Rademacher with nonzero probability $\rho < c_{\rho}$. Let $Q \subset \mathbb{R}^{m \times n}$ be a random subspace of dimension

$$\dim(Q) \ge C_Q \cdot (\rho mn + mr) \cdot \log^2 m \tag{2.5}$$

distributed according to the Haar measure, probabilistically independent of $sign(S_0)$. Then with probability at least $1 - Cm^{-9}$ in $(sign(S_0), Q)$, the solution to

minimize
$$\|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1$$
 subject to $\mathcal{P}_Q[\mathbf{L} + \mathbf{S}] = \mathcal{P}_Q[\mathbf{L}_0 + \mathbf{S}_0]$ (2.6)

with $\lambda = 1/\sqrt{m}$ is unique, and equal to $(\mathbf{L}_0, \mathbf{S}_0)$. Above, c_r, c_ρ, C_Q, C are positive numerical constants.

Q is obtained from the linear span of different independent N(0,1) matrices with iid entries

Wright et al, "Compressive Principal Component Pursuit" http://yima.csl.illinois.edu/psfile/CPCP.pdf

Summary

- Low rank matrix completion: motivation, key theorems, numerical results
- Algorithm for low rank matrix completion
- Robust PCA
- (Compressive) low rank matrix recovery
- Compressive RPCA
- Several papers linked on moodle