
A Minimization Algorithm

• Consider the minimization problem:

• There are many techniques to solve this problem 
(http://perception.csl.illinois.edu/matrix-
rank/sample_code.html)

• Out of these, we will study one method called 
“singular value thresholding”.
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Singular Value Thresholding (SVT)

Ref: Cai et al, A singular value thresholding algorithm for matrix completion, SIAM Journal 
on Optimization, 2010.
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The soft-
thresholding
procedure obeys the 
following property 
(which we state w/o 
proof).



Properties of SVT (stated w/o proof)

• The sequence {k} converges to the true solution 
of the problem below provided the step-sizes {k} 
all lie between 0 and 2. 

• For large values of , this converges to the 
solution of the original problem (i.e. without the 
Frobenius norm term). 
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Properties of SVT (stated w/o proof)

• The matrices {k} turn out to have low rank 
(empirical observation – proof not 
established).

• The matrices {Yk} also turn out to be sparse 
(empirical observation – rigorous proof not 
established).

• The SVT step does not require computation of 
full SVD – we need only those singular vectors 
whose singular values exceed τ. There are 
special iterative methods for that.



Results

• The SVT algorithm works very efficiently and is 
easily implementable in MATLAB.

• The authors report reconstruction of a 30,000 
by 30,000 matrix in just 17 minutes on a 1.86 
GHz dual-core desktop with 3 GB RAM and 
with MATLAB’s multithreading option enabled.



Results (Data without noise)

https://arxiv.org/abs/0810.3286

https://arxiv.org/abs/0810.3286


Results (Noisy Data)

https://arxiv.org/abs/0810.3286

https://arxiv.org/abs/0810.3286


Results on real data

• Dataset consists of a matrix M of geodesic 
distances between 312 cities in the 
USA/Canada.

• This matrix is of approximately low-rank (in 
fact, the relative Frobenius error between M
and its rank-3 approximation is 0.1159).

• 70% of the entries of this matrix (chosen 
uniformly at random) were blanked out.



Results on real data

https://arxiv.org/abs/0810.3286

https://arxiv.org/abs/0810.3286


Algorithm for Robust PCA

• The algorithm uses the augmented Lagrangian
technique. 

• See 
https://en.wikipedia.org/wiki/Augmented_Lag
rangian_method and https://www.him.uni-
bonn.de/fileadmin/him/Section6_HIM_v1.pdf

• Suppose you want to solve:
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Algorithm for Robust PCA

• Suppose you want to solve:

• The augmented Lagrangian method (ALM) 
adopts the following iterative updates:
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ALM: Some intuition

• What is the intuition behind the update of the 
Lagrange parameters {λi}?

• The problem is:
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The maximum w.r.t. λ will be ∞ unless the 
constraint is satisfied. Hence these 
problems are equivalent. 



ALM: Some intuition

• The problem is:

0)(I,i s.t.

)( min

 xc

xf

i ))(),...,(),(()(

)()(max min t

xcxcxcx

xxf

|I|21

x





c

cλλ

Due to non-smoothness of the max function, the equivalence has little 
computational benefit. We smooth it by adding another term that penalizes 
deviations from a prior estimate of the λ parameters.
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Maximization w.r.t. λ
is now easy 



ALM: Some inutuion – inequality 
constraints
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is now easy 



Theorem 1 (Informal Statement)

• Consider a matrix M of size n1 by n2 which is the sum of a 
“sufficiently low-rank” component L and a “sufficiently 
sparse” component S whose support is uniformly 
randomly distributed in the entries of M.

• Then the solution of the following optimization problem 
(known as principal component pursuit) yields exact 
estimates of L and S with “very high” probability:
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This is a convex 
optimization 
problem.



Algorithm for Robust PCA

• In our case, we seek to optimize:

• Basic algorithm:
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Lagrange matrix

Update of S using 
soft-thresholding

Update of L using 
singular-value 
soft-thresholding



Alternating Minimization Algorithm for Robust PCA



Results

https://statweb.stanford.edu/~candes/papers/RobustPCA.pdf

https://statweb.stanford.edu/~candes/papers/RobustPCA.pdf


(Compressive) Low Rank Matrix 
Recovery



Compressive RPCA: Algorithm 
and an Application

Primarily based on the paper:
Waters et al, “SpaRCS: Recovering Low-Rank 
and Sparse Matrices
from Compressive Measurements”, NIPS 2011



Problem statement

• Let M be a matrix which is the sum of low rank 
matrix L and sparse matrix S.

• We observed compressive measurements of 
M in the following form:
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Scenarios

• M could be a matrix representing a video –
each column of M is a vectorized frame from 
the video.

• M could also be a matrix representing a 
hyperspectral image – each column is the 
vectorized form of a slice at a given 
wavelength. 

• Robust Matrix completion – a special form of a 
compressive L+S recovery problem.



Objective function: SpaRCS

Free parameters

SpaRCS = sparse and low rank decomposition via compressive 
sampling



SparCS Algorithm

Very simple to implement; but requires tuning of K, r parameters; 
convergence guarantees not established.

https://papers.nips.cc/pap
er/4438-sparcs-recovering-
low-rank-and-sparse-
matrices-from-
compressive-
measurements.pdf

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf


Results: Phase transition

https://papers.nips.cc/paper/4438-sparcs-
recovering-low-rank-and-sparse-matrices-
from-compressive-measurements.pdf

Code: 
https://www.ece.rice.edu/~aew2/sparcs.html

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf
https://www.ece.rice.edu/~aew2/sparcs.html


Results: Video CS

Follows Rice SPC model, independent compressive measurements on each frame 
of the matrix M representing the video. https://papers.nips.cc/paper/4438-sparcs-

recovering-low-rank-and-sparse-matrices-
from-compressive-measurements.pdf

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf


Results: Video CS

Follows Rice SPC model, independent compressive measurements on each frame 
of the matrix M representing the video.

https://papers.nips.cc/paper/4438-sparcs-
recovering-low-rank-and-sparse-matrices-
from-compressive-measurements.pdf

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf


Results: Hyperspectral CS

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-
from-compressive-measurements.pdf

Rice SPC model of CS measurements on 
every spectral band

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf


Results: Robust matrix completion
https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-
matrices-from-compressive-measurements.pdf

https://papers.nips.cc/paper/4438-sparcs-recovering-low-rank-and-sparse-matrices-from-compressive-measurements.pdf


Theorem for Compressive PCP 

Wright et al, “Compressive Principal Component Pursuit”
http://yima.csl.illinois.edu/psfile/CPCP.pdf

Q is obtained from the linear span 
of different independent N(0,1) 
matrices with iid entries

http://yima.csl.illinois.edu/psfile/CPCP.pdf


Summary

• Low rank matrix completion: motivation, key 
theorems, numerical results

• Algorithm for low rank matrix completion

• Robust PCA

• (Compressive) low rank matrix recovery

• Compressive RPCA

• Several papers linked on moodle


