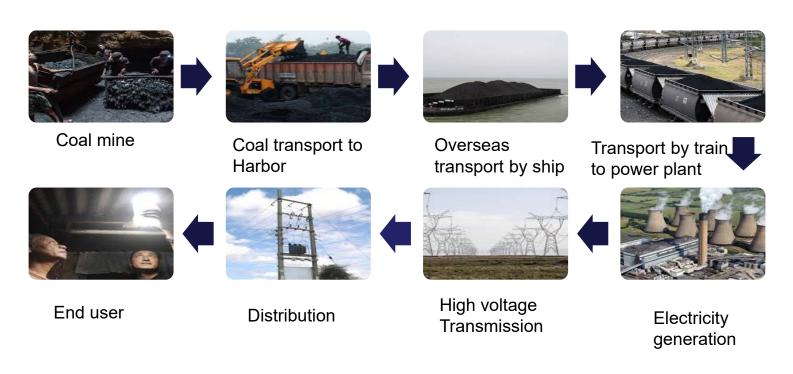
Introduction of Renewable Energy Technologies

Introduction to Renewable Energy Technologies – Part II

Prof. C.S. Solanki
Department of Energy Science and Engineering chetanss@ese.iitb.ac.in

Recap of the last lecture

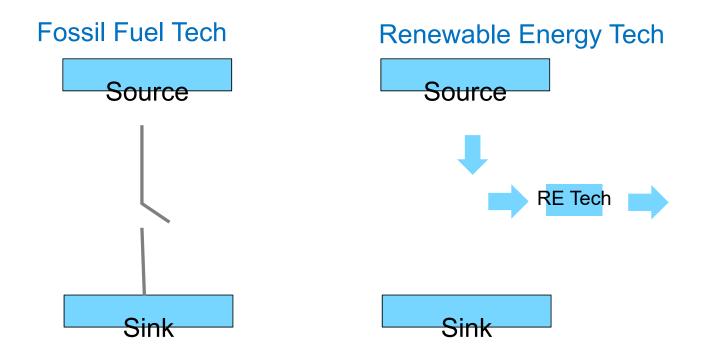

- ☐ Discussion regarding the possible energy future scenarios
- ☐ Gandhian model of sustainability
- ☐ The need for centralized and decentralized generation
- ☐ Value chain of generating electricity using coal power plants

In this lecture

- ☐ Key differences and features of renewable energy technologies
- ☐ Current status of renewable energy technologies in India
- ☐ Studying renewable energy technologies
- ☐ The Sun, its power and power density, black body radiation
- ☐ Sun's spectrum

The coal to electricity value chain

☐ Usually coal and generated power travels long distance before it is used



Centralized and decentralized power plants

☐Renewable energy technologies provides opportunity for decentralized generation

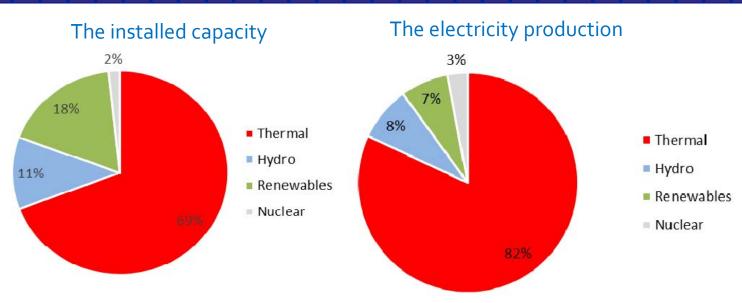
Centralized	Decentralized
located near the resource availability	located near the load center
electricity is fed to the transmission	electricity is fed to the distribution
network	network
High capacity plants of few MW	Low capacity plants of few kW

The renewable sources wind, solar, wave are flowing even if not in use

□ Renewable energy technologies are designed to work on maximum power transfer principle while the non-renewable energy technologies on maximum energy transfer

In Non-renewable energy technologies source is more important

In Renewable energy technologies conversion machines are more important


☐ Renewable energy sources are intermittent in nature, therefore the conversion tool in many cases does not work continuously

→ Less energy output for same power rating

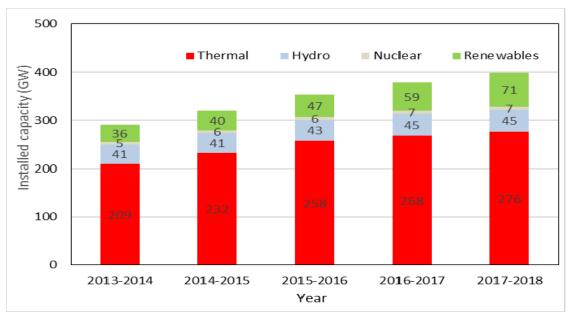
Capacity factor = Energy generated during a time period

Energy that plant would have generated if operated with 100% capacity in same duration

☐ Sometime, it is also referred as **plant Load Factor**, ratio of average load to the rated load of the plant



Source: Energy statistics of India 2019


- ☐Thermal accounts for 69 % installed capacity but 82 % in electricity production
- □Renewable has a share of 18 % of installed capacity but only 7 % in electricity production

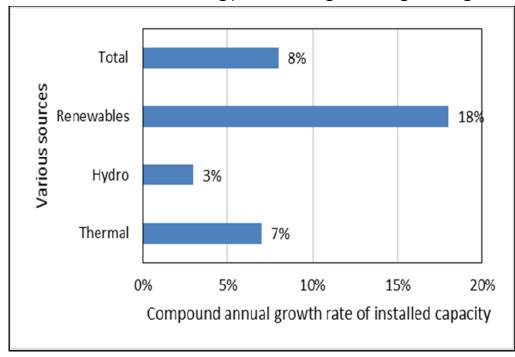
Conventional and Renewable power plants

Conventional	Renewable
High power density of the fuel	Low power density of the fuel
Thermal (coal, oil, gas) large hydro, nuclear etc.	Small hydro, solar, wind, bio-mass etc.
The plant load factor is typically in between	·
50 % to 70 %	20 %
In designing focus is to maximize energy	In designing focus is to maximize the
produced	power produced
Low capital cost but operation and	
maintenance cost (fuel cost) exists	High capital cost but fuel is free.
throughout the service life	-
The supply is continuous	The supply is intermittent

The installed generation capacity of India

Around 400 GW is the Indian installed capacity: utilities and non-utilities

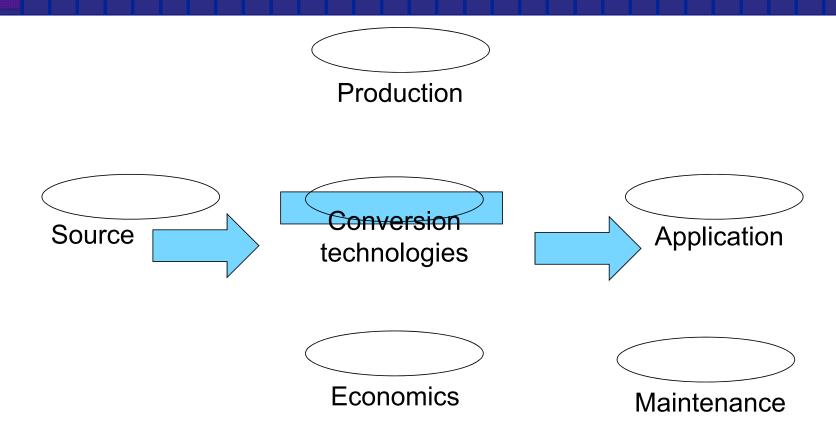
☐ Thermal (276 GW) is used for base load due to low cost and high reliability


☐ Renewable is only 71 GW

Source : Energy statistics of India 2019

☐ In India thermal is a dominating source as it is used for base load

Growth of renewable energy technologies in India

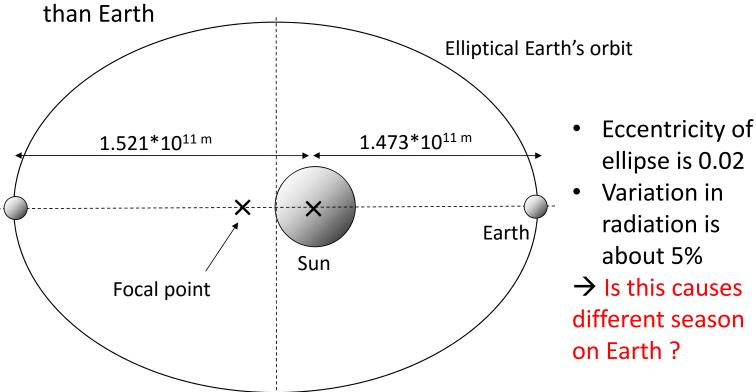

☐ Renewable energy technologies are growing with good rate

- □The compound annual growth rate(CAGR) of total installed capacity is 8 %
 - ☐Renewable has CAGR of 18 %
 - ☐Thermal has a CAGR of 7 %

Source: Energy statistics of India 2019

Study of Renewable Energy Technologies

नमः सूर्याय शान्ताय सर्वरोग निवारिणे आयु ररोग्य मैस्वैर्यं देहि देवः जगत्पते ॥


'O! Lord Surya (Sun), ruler of the universe, you are the remover of all diseases, the repository of peace. I bow to you and please bless your devotees with long life, health, and wealth.'

The Sun

- Mean distance from the earth: 1.496x 10¹¹ meter
- Mean diameter of the Sun: 1.392x10⁹ meter (=109 Earths)
- Sun is modeled as black body radiation (Black body at 5250 °C).
- The power received by earth is 1.7x10¹⁷ W

The Sun-Earth movement

- The Earth rotates around the Sun in elliptical orbit
- Diameter of the Sun is about 1.3×10^9 meter, about 100 times

Solar Constant

- Average solar radiation outside the earth atmosphere is known as solar constant
- Its value is **1367 W/m²**
- The earth revolves around sun in elliptical path with small eccentricity → sun-earth distance varies (radiation inversely proportional to square of the distance)
- Actual radiation can be estimated with following eq.

$$I_{sc}' = I_{sc} \left(1 + 0.033 \cos(\frac{360n}{365}) \right)$$
 Where n is the day of the year

Sun's spectrum

The spectrum of radiated energy by a Sun can be obtained by the Planck's black body radiation model

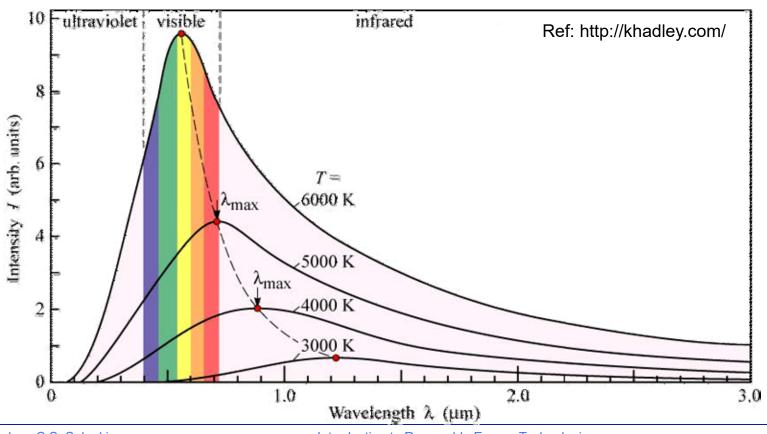
$$P_{\lambda}(d\lambda) = rac{2\pi hc^2 \lambda^{-5}}{e^{hc/\lambda kT}-1}$$
 h- Planck's constant c - speed of light λ - wavelength P λ (d λ) is the energy

Where,

T – temperature

h- Planck's constant

 $P\lambda(d\lambda)$ is the energy radiated per unit time per unit area in the wavelength range between λ and λ +d λ (in W/m²/unit wavelength)


Total power radiated by a body at temperature T is given by Stefan-Boltzmann law

$$P = \varepsilon \sigma T^4$$

ε - emissivity,

σ - the Stefan–Boltzmann constant

Power from Sun: ~10³⁰ W, ~10¹¹ W/m²

Recap of the last lecture

- ☐ Difference between renewable and non-renewable energy technologies
- ☐ Centralized vs decentralized generation
- ☐ Limited sources vs unlimited sources generation
- ☐ Maximum power vs maximum efficiency based conversion
- ☐ Sun's power and spectrum

Thank you for your attention

Chetan S. Solanki