Advances in sheet metal forming research

Asim Tewari Department of Mechanical Engineering Indian Institute of Technology Bombay, Mumbai

Search

More Options

Ser.

हिन्दी संस्करण (Hindi Version) **About IIT Bombay** IIT Indore Entrance Exams Academics Academic Services Entrepreneurship Students Alumni Old Guest House overlooking Pond

In a gentle way, you can shake the world - Mahatma Gandhi

20 A B

R&D

IIT BOMBAY AT A GLANCE

Engages in research, education, training, technology development and related activities in most areas of technology, science & management

- > 530 acres (5.3 sq. km) of campus area
- > 15 Departments, 1 School, 4 IDPs & 9 Centers
- ~600 fulltime faculty & 90 adjunct faculty
- ~1300 support staff
- ~9600 students (P.G ~ 6000; PhD~2000)
- ~750 project research staff

Patents (India and Foreign) 2012-2013	>100
Number of industries which come to us for projects	>2000
Research funding in INR (Governmental & Industrial, 2012-13)	~300 Cr
Number of technology spinoffs from IITB technologies	>50

NCAIR

National Centre for Aerospace Innovation and Research

A Dept of Science and Technology- Government of India, The Boeing Company and IIT Bombay Collaboration

BOEING

- Macro modeling
 - Constitutive property (anisotropy and evolution) based
- Micro Modeling
 - Second-phase particle based large scale modeling
- Nano Modeling
 - Nano structure modification using pre-form annealing

Modalities of acquisition

- Optical
- SEM
- EBSD
- FIB
- TEM
- AFM
- SPM
- X-ray CT
- PET, MRI, SIMS, etc.

Larger to smaller

Larger to smaller

Case Study 1 Macro modeling of Ti64 sheet deformation

Technological challenges

- Formability
- A-class surface finish
- Dent resistant after paint-bake
- Cost

Forming Limit Diagram(FLD)

- FLD indicates different modes of deformation
- FLD indicates different forming regions

Specimens geometry for Forming Limit Diagram

AsimTewari.com 14

Strain diagram

FLD with major stress along **TD**

FLD with major stress along **RD**

FLD with major stress along **ID**

Transverse direction

Inclined direction

Rolling direction

Summary

- •The final fracture is a sum total effect of sample geometry (w.r.t. loading) and material anisotropy.
- •The changeover from fracture along rolling direction to major stress direction can be captured by macro anisotropic analysis.

Case Study 2 Al sheet formability (DC vs CC)

Motivation

Large formability variation of same 5754 Al alloy processed through different processes

Asi

Automotive lightweighting

- Advantages
 - Fuel consumption and emissions
 - 10% weight reduction => 7% increase in fuel ecomony
 - Performance
 - Less inertia => better acceleration
 - Passive safety
 - Lighter thrust, optimal weight distribution
 - Active safety
 - Increased braking stability and efficacy
 - Acoustics
 - Dynamic alleviation
- FIVE KEY Challenges
 - Cost reduction
 - Manufacturability
 - Design data and test methodologies
 - Joining
 - Recycling and repair.

Cost Analysis

- Continuous casting vs direct chill cast sheets
 - 25% energy savings in CC
 - 14% economic saving in CC

- Manufacturability
 - Formability of CC in lower than DC (FLD)

Alloy composition and processing

5754 Alloy	Mg wt%	Mn wt%	Cr wt%	Fe wt%	Si wt%
DC	3.0	0.25	0.01	0.18	<0.10
TBC	3.1	0.25	< 0.01	0.24	<0.10
TRC-I	2.8	0.01	< 0.01	0.25	0.10
TRC-II	2.9	0.01	<0.01	0.24	0.08

Typical microstructure of various 5754 alloys

Center-line Segregation

Discontinuous centerline segregation in TRC-II

Second phase particles

Two type of second phase particles are present

Asi

Through thickness microstructure variation

Mechanical properties along the rolling direction

TRC has lower YS and UTS than TBC or DC

As

Fractographic investigation (TRC-I)

Microvoid formation at particle clusters

Microstructure based FEA

As

Modeling particles as intersecting ellipses is a good approximation

FE predictions of uniaxial stress-strain behavior

Novelis has higher localization strain than Assan With in Assan, center region has lower localization strain than top

Correlation of localization strain and Extreme Property Index (EPI)

EPI is identified as a key microstructural attribute
Plastic deformation by slip

Inverse pole figure maps

Rolling Direction

Fraction of various texture components

TBC has more rolling texture while TRC has more re-crystalization

texture

Summary

Case Study 3 Large scale formability simulations

Microstructural features in 5754 Al

Alloy	Mg	Mn	Cr	Fe	Si	Cu	AI
DC	3.0	0.25	0.01	0.18	<0.1	0.01	Bal.
CC	3.1	0.25	<0.01	0.24	<0.1	0.02	Bal.

Effect of Spatial arrangement of second phase

Clustered

Random

AsimTewari.com 43

00 000

Virtual tensile test

Real Microstructure

FE Representation

Comparison of DC vs CC alloy

Alloy	V _V	S _v (μm) ⁻¹	λ(µm)	L ₃ µm
DC	0.0095±0.0005	0.038±0.002	104.6	1.01
СС	0.0095±0.0010	0.045±0.005	87.5	0.84

Vectorization approximation

- More emphases on spatial arrangement
- Partial shape parameterization
 - PCA
 - Distance transformation maps
 - SPHARM*

Orthonormal spherical harmonics of the solutions to Laplace's equation represented in spherical coordinates

Ellipsoid

*L. Shen, J. Ford, F. Makedon, and A. Saykin, Intl Con Com Vis Patt Recog Img Proc, NC, 2003.

Ellipsoid shape approximation

- Sphere, prolate, oblate, scalene, egg

Ellipsoid shape approximation

Shape	Number of variables	Variables	
Generalized ellipsoid	9	Centriod (h,k,l) Radii a, b, and c Euler angles ϕ_1, Φ, ϕ_2	
Generalized spheroid	7	Centriod (h,k,l) Radii a and b Angles θ and ϕ	
Axisymmetric Spheroid	6	Centriod (h,k,l) Radii a and b Angles θ	
Sphere	4	Centriod (h,k,l) Radii a	

2D vector image

2D vector image

2D vector image

Intrinsic Volumes

• Minkowski Functions

$$W_k(Y) = \frac{b_d}{b_{d-k}} \int_{L_k} V_{d-k} (P_s \perp Y) U_k(dS)$$

d+1 intrinsic volumes in d dimensional space

In R³ W_0, W_1, W_2, W_3 AsimTewari.com 52

Hadwiger theorem

All additive, motion-invariant, and continuous functions of convex sets are linear combinations of these four characteristics.

For R^d this can be written as

$$h(Y) = \sum_{k=0}^{d} a_k W_k(Y)$$

Extension to convex rings

Convex Ring A

$$W_{K}(A) = \frac{b_{d}}{b_{d-k}} \iint_{L_{k}S} \chi(A \cap Ss) v_{d-k}(ds) U_{k}(ds)$$

Location and orientation transformation

Eulerian rotation and translation

True 3D microstructural reconstruction

Serial sectioning

- Micro hardness indents
- Section alignment (Affine transform)
- 3D rendering

3D voxel data

3D Vectorized Image

3D Graded FE mesh

Typical microstructure

- Particle size ~ 1 μm
 - λ ~100 μm

Simulation size: $(200 \ \mu m)^3$

particle

FEM Model size

Technique	Assumptions	Size	Data recovery	
Brute force	None	~5x10 ⁸	Perfect	
Autocorrelation	Hilbert space Stationarity	~5x10 ⁸ *	Good	
Eigenvalue space	Hilbert space	~10 ⁶	Not possible	
Vectorized geom tric primitives	Shape	~6x10 ⁴	Good/Fair	
Tewari.com 61	Digital: not discrete but continuous			

Summary

- Spatial arrangement of second phase play an important role in plastic localization
- Intersecting ellipsoids form Convex rings (extension of convex sets)
- Reduction of storage by ~4 orders
- Automated graded mesh generation

Future Directions

- Incorporation of other geometric primitives
- Parameterization of grains by four dimensional Poisson polyhedrons (and ordered texture triplets)
- Preserves three intrinsic volumes in 3D
 Future is Digital but not discrete
 - Modeling with meshless and finite point methods

Case Study 4

Nano structure modification using pre-form annealing

Experimental FLD (AA 6061)

PFA Technology for AI 5000 series

Heat Treatment:

- Direct Forming (1 and 4)
- PFA (Pre-Form Annealing) Forming (1, 2, 3 and 4)

Pre-Form Annealing of Door Inner of SUV

Theresa Lee et. al. SAE Int, 2006

AsimTewari.com 6Patented technology for AI 5000 alloys in the process of DD at GM R&D

Scientific challenges

- Multiple-precipitate variants
- Multiple precipitation pathways
- Various states of coherency
- Role of dislocation landscape on thermodynamics and kinetics of precipices
- Simultaneous recovery and precipitate overaging
- Early recrystallization

Recovery

After straining

Annealing After straining

a) Bent lattice with dislocations of both sign

b) Annihilation of dislocations with opposite sign

c) Polygonization of the lattice

Process to reduce the total number of dislocations by:

- Annihilation
- Re-arrangement into lower energy configuration/s

Precipitation hardening

3 step heat treatment:

- Solution heat treatment, to dissolve the alloying elements
- Quenching, to form SSSS
- Aging, the controlled decomposition of the supersaturated solid solution (SSSS) to form a fine dispersion of precipitates

Microstructure Development: Aging

Strengthening Process

Strengthening Process

Yield strength

Ageing time, t

Texture Evolution: Al 6xxx and 5xxx

- Depends on the time/ temperature history
- Main difference is due to the precipitation of Mg₂Si in 6xxx alloys
- Mg₂Si impedes the progress of recrystallization by inhibiting Particle Simulated Nucleation (PSN)

Ref [2]: Olaf Engler at. al.

• Leads to pronounced cube texture

Below 300 C, recrystallization patterns are unobserved, In order to achieve that, higher temperatures are required

Effects of Si

- Si level does not have a significant influence on the aging kinetics but primarily affects the initial strength level
- Exception of the very highest Si level, the strength increases linearly with Si content
- Only a small offset in strength, which increases with increasing Si content

Al-Si-Mg Phase diagram

Van Huis at. al. Acta Mater pp. 2183-2199, 2007

Metastable states

Phase	Composition	Structure	Exp. Lattice parameters
GP zone	$Mg_1 Si_1$	Monoclinic	a= 4.05 A
		P2/m	b= 4.05 A
			c= 4.05 A
			β= 90.0
Pre β″	(Mg + Al) 5Si6	Monoclinic	a= 14.78 A
	before 0.5b	C2/m	b= 4.05 A
	shift		c= 6.74 A
			β= 106.8
Pre β″	Mg4Si7 before	Monoclinic	a= 14.6 A
	0.5b shift	C2/m	b= 4.05 A
			c= 6.40 A
			β= 105.3
β″	Mg5Si6 after	Monoclinic	a= 15.16 A
	0.5b shift	C2/m	b= 4.05 A
			c= 6.74 A
			β= 105.3
β″	(Mg + Al) 5Si6	Monoclinic	a= 14.78 A
	after 0.5b shift	C2/m	b= 4.05 A
			c= 6.74 A
			β= 106.8
U1	Mg1Si2 Al2	Trigonal	a= 4.05 A
		P3m1	c= 6.74 A
U2	Mg4 Si4 Al4	Orthorhombic	a= 6.75 A
		Pnma	b= 4.05 A
			c= 7.94 A
U3	Mg ₄ Si ₈	Imma	a= 6.40 A
			b= 4.05 A
			c= 7.46 A
B'	Al3Mg9Si7	Hexagonal	a= 10.4 A
		P6	c= 4.01 A
β'	Mg9Si5	Hexagonal	a= 7.15 A
		P6 ₃ /m	c= 12.15 A
β	Mg6 Si3 Mg ₂ Si	Anti-flourite Fm3m	a= 6.39 A

 $SSSS \rightarrow clusters \rightarrow initial - \beta^{"}$

Van Huis at. al. Acta Mater pp. 2945-2955, 2006

Precipitation Phases

Van Huis at. al. Acta Mater pp. 2945-2955, 2006

Phase transformation

TEM experiments

Sample	Pre-Strain	Annealing time	Annealing temp.	Annealing source
Sample 1	15%	0	NA	NA
Sample 2	15%	10 s	250°C	SALT BATH
Sample 3	15%	60 s	250°C	SALT BATH
Sample 4	15%	5 min	250°C	SALT BATH
Sample 5	15%	60 min	250°C	SALT BATH
Sample 6	15%	5 min	250°C	FURNACE
Sample 7	15%	60 min	250°C	FURNACE
Sample 8	0%	0	NA	NA

15% prestrain with no annealing

15% prestrain with annealing (sub-grain structure)

Sub-structure

Diffraction pattern of left micrograph

15% prestrain with annealing $(\beta'' \text{ and } \beta' \text{ observed})$

15% prestrain with annealing (β')

.............................

A 🎴 B 📍

Semi- coherent Precipitates

Summary

- Large localized shear zones in pre-straining
- Evidence of recovery (sub-grain structure) on annealing
- Presence of both plate-like β' and needle-like β'' on annealing
- Stoichiometry of β' and β'' (start and end Temp)?