Micro-Nano Fabrication Research

Technical Education Quality Improvement Programme 22-23 December 2014

Dr. Rakesh G. Mote

Assistant Professor

Department of Mechanical Engineering

IIT Bombay

rakesh.mote@iitb.ac.in; www.me.iitb.ac.in/~rakesh.mote

Micro/Nano Fabrication

- Overview of Lithographic Techniques
 - Photolithgraphy
- Overview of Direct Machining
 - Focused Ion Beam (FIB)
- FIB Applications to micro-optical structures
 - Milling
 - Depostion
 - Self organization
- FIB Applications to tool fabrication for ultra precision machining

Micro/Nano Fabrication Techniques

- Lithographic Techniques
 - Binary Mask Method (~ 300 nm)
 - Direct Writing (< 20 nm with e-beam lithography)
 - Interferometric Exposure (~ 300 nm)
 - Gray-scale Lithography
 - Near Field Holography
- Direct Machining
 - Focused Ion Beam (FIB) Milling (< 20 nm)
 - Laser Ablation

Replication

- Injection Molding
- Thermal Embossing
- Casting and UV embossing
- Soft Lithography (< 100 nm)

Micro - Fabrication Techniques

Lithography Process

- Optical Lithography / Photolithography
 - Parallel Writing
- E-beam Lithography
 - Serial Writing

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

Lithography

- Litho means "Stone" and Graphy means "Writing"
- ✓ Pattern Transfer process from mask to wafer
- ✓ Optical Light/X-Ray is used to project pattern on mask onto surface of Wafer
- ✓ Wafer surface is coated with photosensitive material (photoresist) in case of photolithography
- ✓ Exposed area of photoresist gets softened/hardened depending on type of photoresist

Lithography

Lithography

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

- Hg Arc lamps 436(G-line), 405(H-line), 365(I-line) nm
- Excimer lasers: KrF (248nm) and ArF (193nm)
- Laser pulsed plasma (13nm, EUV)

- 1.Begin with Doped Silicon Substrate (Electric Properties)
- 2. Grow Oxide Layer (Insulation)
- 3. Apply Photoresist Polymer (Photosensitive Coat)
- 4. Place Mask over Chip (acts as elaborate template)
- 5.Expose Areas to be Removed to Light
- 6.Remove Mask
- 7.Wash Away Exposed Photoresist
- 8. Etch Oxide Layer
- 9. Deposit Next Layer
- 10.Remove Remaining Photoresist

Photolithography for patterning a mask layer

TYPES OF PHOTOLITHOGRAPHY

Micro - Fabrication Techniques

- Lithographic Techniques
 - Binary Mask Method (~ 300 nm)
 - Direct Writing (< 20 nm with e-beam lithography)
 - Interferometric Exposure (~ 300 nm)
 - Gray-scale Lithography
 - Near Field Holography
- Direct Machining
 - Focused Ion Beam (FIB) Milling (< 20 nm)
 - Laser Ablation

Replication

- Injection Molding
- Thermal Embossing
- Casting and UV embossing
- Soft Lithography (< 100 nm)

Focused Ion Beam (FIB)

- Focused ion beam (FIB) microscopes are versatile tools enabling inspection, characterization, structuring or manipulation for a broad range of materials.
- The basic concept is very similar to scanning electron microscopes (SEM) but uses charge atoms (ions) instead of electrons.
- Typically, a fine tungsten pin covered with liquid Gallium is used as ion source from which Ga atoms are extracted and ionized via high tensions.
- Such Ga+ ions are then accelerated in the range of 0.5 -30 keV and focused on the sample via electrostatic lenses.

Focused Ion Beam (FIB) System

FIB-SEM Dual Beam System (Nova 200 Nanolab, FEI Inc)

Ion Column in the Chamber (FEI Inc)

FIB system (Tseng 2004)

Ion Sources

- Gallium as an ion source:
 - -Ga has a low melting point (T_m = 29.6°C).
 - Lower melting point minimizes any reaction or inter-diffusion between the liquid and the tungsten needle substrate.
 - About 99% of the ions in the beam are singly charged. Therefore, no mass filter is needed and the ion column design becomes easier
 - Ga can be focused to a very fine probe size (10 nm in diameter)

Focused Ion Beam (FIB) System

Sputtering mechanism (Nastasi et al. 1996)

FIB Imaging

Voltage Contrast like Imaging of N-Wells

23-Dec-2014

FIB Milling

- Simple milling in FIB refers to the sputtering phenomenon due to energetic impingement of focused ion beam on the target material.
- Maskless etching: It is possible to process several tens on nanometer level area without using a mask.
- In addition, provision to observation of processing condition under microscope makes very accurate and high precise results possible

FIB Milling Micro Channel

• A: Ridge width

the distance between the ridge peaks

- B: Mouth width the channel width w.r.t. the original surface,
- C: the depth from the original surface,
- D: Ridge height.

FIB Milling Process Parameters

- Beam Current
- Angle of Incidence

FIB Milling Process Parameters

- Ion Energy (~ 1-60 KeV)
- Dwell Time (or Ion Dose)
- Number of Passes
 - Single vs Repetitive passes
 - Redposition

FIB Milling Enhanced Etch

- Gas Assisted Etching (GAE) or Chemical Assisted Focused Ion Beam Machining (CEFIBM)
- Chemical enhancements of material removal rates result from chemical reactions are initiated by impinging Ga⁺ions.
- These reactions involve a chemical injected into the vacuum which then adsorbs to the sample surface and the surface constituents of the material being micromachined
- Ideally, these reactions both increase the material removal rate and result in a volatile reaction product, thus reducing redeposition of micromachined material.

FIB Milling Enhanced Etch

Free edge micromachining of Permalloy (a) without chemical enhancement and (b) using C_2Cl_4

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay Russell et al, JVSTB (1998) $_{26}$

FIB Milling – Gas assisted Enhanced Etch

Gas	Target	Etch rate (μm ³ /nC)	Enhancement factor
Cl ₂ Silicon Aluminur GaAs Silver Diamond	Silicon	2.6	11.8
	Aluminum	0.6	3
	GaAs	6.9	10
	Silver	1.1-2.8	< 2
H ₂ O	Diamond	1	7
	PMMA	7.5	15
	Polyamide	8.5	17
XeF ₂	Silicon		7-12
C ₂ Cl ₄	Permalloy	0.78	7.8
I ₂	PMMA	0.9	2

FIB Chemical Vapor Deposition FIB-CVD

- A gas carrying the element to be deposited is delivered through injection nozzles
- Deposition requires that gas molecules delivered to the surface are adsorbed in adequate numbers and their binding energy to the surface is sufficiently large
- Binding Energy vs Decomposition Energy
- Wide range of metals can be deposited:
 W, *Pt*, *AI*, *Ta*, *C*, *SiO*₂, etc

FIB Chemical Vapor Deposition FIB-CVD

FIB Chemical Vapor Deposition FIB-CVD

Element	Precursor gas	Deposit
W	Tungsten bevacarbonyl [W(CO)] WF	W:C:Ga
	Tungsten nexacarbonyr [w(CO) ₆], wr ₆	60:20:20
Pt	Methylcyclopentadienyl(trimethyl) platinum [C ₉ H ₁₆ Pt],	
	C ₇ H ₁₇ Pt,	Pt:C:Ga
	Trimethylcyclopentadienyl-platinum	30:60:10
	$[(CH_3)_3CH_3C_5H_5Pt]$	
Au	C-H-F-O-Au	Au:C:Ga
	C/11/1602Au	80:10;10
Al	AI(CH), (CH.), NAIH,	Al:O:Ga:C
	AI(CI1)3, (CI13)3I(AII13	37:27:26:10
Si, SiO ₂	Siloxane compound TEOS: Si(C ₂ H ₅ O) ₄ ,	Si:O:C:Ga
	Silane TMOS: Si(CH ₃ O) ₄ , O ₂	11:64:11:13
С	Phenanthrene C ₁₄ H ₁₀	

FIB Chemical Vapor Deposition FIB-CVD - 3D Structures

The key point to making 3D structures is to adjust the beam scan speed so that the ion beam remains within the deposited terrace, which means that the terrace thickness always exceeds the range of the ions.

FIB Chemical Vapor Deposition FIB-CVD - 3D Structures

Jun et al, Nano Lett. (2010)

23-Dec-2014

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

FIB Chemical Vapor Deposition FIB-CVD - 3D Structures

Due to an intriguing optical phenomenon, the scales reflect **interfered brilliant blue color** for any angle of incidence of white light. This color is called a **structural color**, meaning that it is not caused by pigment reflection

SIM image of the Morpho butterfly quasistructure of DLC fabricated by FIB-CVD using *phenanthrene* $(C_{14}H_{10})$ as a precursor

Watanabe et al, Jpn. J. Appl. Phys., 2005

Rakesh G Mote (ra...... TEQIP @ IIT Bombay

FIB Implantation Micro-cantilever fabrication

- a) Implantation or modification by FIB scanning (cross section),
- b) Top view of a FIB-scanned surface with a quad-cantilever layout,
- KOH etching for a nonimplanted substrate (cross section),
- d) SEM image of fabricated quad-cantilevers, which are 30 nm thick, 500 nm wide, and 5mm long

J. Brugger et al, Microelectron. Eng., 1997

FIB Implantation Maskless Nanocup fabrication

J. Brugger et al, Microelectron. Eng., 1997

Etch Selectivity

The ability to remove one sample constituent while leaving other sample constituents relatively unaffected

Stark et al, JVST, 1996

This feature was micromachined in 11 minutes. Using physical sputtering alone to remove the **PMMA** would have required 225 minutes and the **AI metallization** would be completely removed

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

Surface Structuring

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

End Point Detection

Rakesh G Mote (rakesh.mote@iitb.ac.in)

FIB Nanofabrication of cutting tools for Ultra Precision machining

Roadmap for Precision Optical Components and Systems

"Ultraprecision machining is doing for light what integrated circuits did for electronics".

- Blynsky, G, "Closing in on Perfection", Fortune 2003

Traditional Optical Fabrication vs Diamond Turning

- **Traditional optical fabrication**: the final shape and surface of the optical element are produced by lapping and polishing with an abrasive loaded lap
- a displacement controlled vs a force controlled process
- Lithographic techniques: limiting devices to 2D and generally low-aspect ratio
- Unlike in electronics, 3D form accuracy is a necessity for optics, and precision assembly is critical to performance
- **Diamond turning**: the final shape and surface of the optical produced depends on the machine tool accuracy and the *cutting tool geometry and integrity*

Micro/Nano Machining

	nano-machining	micro-machining	macro-machining
size of machined area	$1-10^5 \mu m^2$	$1-10^5 \text{ mm}^2$	$1-10^5 \mathrm{cm}^2$
volume removal in one	from 10^{-3} to $10^2 \mu m^3$	from 10^{-3} to 10^2 mm^3	from 10^{-3} to $10^2 \mathrm{cm}^3$
machining step material removal rate	from 10^{-5} to $1\mu\text{m}^3\text{s}^{-1}$	from 10^{-5} to $1 \mathrm{mm^3 s^{-1}}$	from 10^{-5} to $1 \text{cm}^3 \text{s}^{-1}$
relative figure error	from 10^{-5} to 10^{-3}	from 10^{-7} to 10^{-5}	from 10^{-5} to 10^{-3}
surface roughness (S_a)	1–10 ² Å	1–10 ² nm	from 10^{-1} to $10 \mu\text{m}$

symmetrical surfaces	freeform surfaces	structured surfaces
moulds for plastic lenses	non-telecentric imaging systems	automotive lighting
IR optics	head-up displays	lens arrays
UV optics	LED lighting systems	prism arrays
CO ₂ -laser mirrors	range finders	phase plates
ophthalmic lenses	F-theta lenses	Fresnel lenses
scanner polygons	flat panel backlight units	lab-on-a-chip

Micro/Nano Machining Techniques

Standard Structuring Processes

• Diamond Turning

Standard Structuring Processes Diamond Turning – Fast Tool Servo (FTS)

TEQIP @ IIT Bombay

Standard Structuring Processes

• Diamond Milling

FIB manufacture of microtools

- The variety of tool shapes
- The control over tool geometry
- The nanometer dimensional resolution
- The observation of a tool during shaping
- Negligible mechanical force is placed on the tool during FIB fabrication.

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

Formation of a sharp cutting edge

- FIB induced redeposition effects during sputtering process
 - The sputtered atoms get redeposited on the machined surface

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

FIB induced damage: Heat Treatment

- Diamond surface was sputterted with an Al layer
 ~100 nm thick
- Heating the diamond and maintaining there for 1h to allow Ga ions diffuse into the Al layer.

FIB induced damage: Heat Treatment

Kasegi et al, PE 2014

FIB Fabricated Diamond Tools

Xu et al, OE 2010

Rakesh G Mote (rakesh.mote@iitb.ac.in) TEQIP @ IIT Bombay

Thank you !!!

• Discussion ...