Role of microstructure in modeling of manufacturing Processes

Asim Tewari

National Center for Aerospace Innovation and Research Department of Mechanical Engineering Indian Institute of Technology, Bombay

TEQIP, IIT Bombay Dec 22-23, 2014

Search

More Options

Ser.

हिन्दी संस्करण (Hindi Version) **About IIT Bombay** IIT Indore Entrance Exams Academics Academic Services Entrepreneurship Students Alumni Old Guest House overlooking Pond

In a gentle way, you can shake the world - Mahatma Gandhi

20 A B

R&D

IIT BOMBAY AT A GLANCE

Engages in research, education, training, technology development and related activities in most areas of technology, science & management

- > 530 acres (5.3 sq. km) of campus area
- > 15 Departments, 1 School, 4 IDPs & 9 Centers
- ~600 fulltime faculty & 90 adjunct faculty
- ~1300 support staff
- ~9600 students (P.G ~ 6000; PhD~2000)
- ~750 project research staff

Patents (India and Foreign) 2012-2013	>100
Number of industries which come to us for projects	>2000
Research funding in INR (Governmental & Industrial, 2012-13)	~300 Cr
Number of technology spinoffs from IITB technologies	>50

NCAIR

National Centre for Aerospace Innovation and Research

A Dept of Science and Technology- Government of India, The Boeing Company and IIT Bombay Collaboration

BOEING

Faculty members	Previous affiliations	Faculty members	Previous affiliations
Prof. Suhas Joshi	IIT-Bombay, UIUC	Prof. B. Ravi	IISc Bangalore, Purdue U
Prof. Asim Tewari	Georgia Tech, GM Global R&D	Prof. Ramesh Singh	Georgia Tech
Prof. S.S.Pande	IIT-Bombay, U. Of Cincinnati	Prof. Sushil Mishra	IIT-Bombay, GM Global R&D
Prof. Prita Pant	Cornell University	Prof. V. Kartik	Carnegie Mellon U, IBM Research
Prof. Shiva G.	University of Massachusetts Amherst	Prof. Parag Tandaiya	IISc Bangalore, Caltech, USA
Prof. Rajneesh Bharadwaj	Johns Hopkins University, Baltimore	Prof. Rakesh G Mot	Nanyang Technological University, Singapore.

What is microstructure?

A microstructure is an arrangement of volumes, internal surfaces, lines, and points

<u>Volumes</u>: Voids, fibers, inclusions, particles, grains, etc. <u>Surfaces</u>: Micro-crack surfaces, grain boundaries, inclusion interfaces, etc <u>Lines</u>: Dislocation lines, micro-crack tips, grain edges, triple lines, etc. <u>Points</u>: Quadruple points, particle/grain centers, atoms, etc.

Texture is a part of structure and thus microstructure

Most general definition

Microstructure is a spatially (and/or temporally) varying *d* dimensional data structure.

Modalities of acquisition

 Optical SEM •TEM OAFM OSPM • X-ray CT • PET, MRI, SIMS, etc.

Larger to smaller

Problem of spheres in 3D

For a collection of spheres of different sizes in 3D which of the following is true:

1.) Mean circle size in 2D is less than mean 3D sphere size

2.) Mean circle size in 2D is greater than mean 3D sphere size

3.) Mean circle size in 2D is equal to mean 3D sphere size

Non-trivial problem

On a unit line segment choose two random points x_1 and x_2 . If the points are *d* distance apart (without regard to ordering), what value of *d* has the highest probability?

Stereology : True three-dimensional probe

- Pioneering work on
- 3D spatial statistics
- topological connectivity
- Euler-Poincare
- Approach
- through 3D reconstruction
- grains modeled as ext. convex rings
- Materials System
- A356 alloy
- AA5754 alloy
- AZ31 alloy
- THA

Case Study 1 Titanium alloy machining

Motivation

Gas turbine engine, compressor parts, airframe structure, Landing gear disc

Percentage of Airframe Titanium vs. Year of Rollout—Commercial Transports

Titanium Value Chain—Forgings

Effect of c/a Ratio on slip systems of HCP crystals

Element	c/a	Deviation (%) from the ideal $c/a = 1.633$	Principal slip system	Secondary slip system	Other slip system
Cd	1.886	+15.5	Basal $\{0001\}\langle 11\overline{2}0\rangle$	Pyramidal $\{11\overline{2}2\}\langle 11\overline{2}3\rangle$	Prismatic {1010}(1120) Pyramidal {1011}(1120)
Zn	1.856	+13.6	Basal $\{0001\}\langle 11\overline{2}0\rangle$	Pyramidal $\{11\overline{2}2\}\langle 11\overline{2}3\rangle$	Prismatic $\{10\overline{1}0\}\langle 11\overline{2}0\rangle$
Mg	1.624	-0.6	Basal $\{0001\}\langle 11\overline{2}0\rangle$	Prismatic $\{10\overline{1}0\}\langle 11\overline{2}0\rangle$	Pyramidal $\{10\overline{1}1\}\langle 11\overline{2}0\rangle\{11\overline{2}2\}\langle 11\overline{2}3\rangle$
Co	1.623	-0.6	Basal $\{0001\}(11\overline{2}0)$	None	None
Zr	1.593	-2.4	Prismatic $\{10\overline{1}0\}\langle 11\overline{2}0\rangle$	Basal $\{0001\}(11\overline{2}0)$	Pyramidal $\{10\overline{1}1\}\langle 11\overline{2}0\rangle \{11\overline{2}2\}\langle 11\overline{2}3\rangle$
Ti	1.588	-2.8	Prismatic $\{10\overline{1}0\}\langle 11\overline{2}0\rangle$	Basal {0001}(1110)	Pyramidal $\{10\overline{1}1\}\langle 11\overline{2}0\rangle \{11\overline{2}2\}\langle 11\overline{2}3\rangle$
Hf	1.581	-3.2	Prismatic $\{10\overline{1}0\}\langle 11\overline{2}0\rangle$	Basal $\{0001\}(11\overline{2}0)$	
Be	1.568	-4.0	Basal $\{0001\}\langle 11\overline{2}0\rangle$	Prismatic $\{10\overline{1}0\}\langle 11\overline{1}0\rangle$	Pyramidal $\{10\overline{1}1\}\langle 11\overline{2}0\rangle \{11\overline{2}2\}\langle 11\overline{2}3\rangle$

Typical slip systems observed in some HCP metals

Ref:- Materials Chemistry and Physics 81 (2003) 11–26

•At high cooling rate from above matensite start temp transform β phase completely into hcp α by diffusionless transformation

•It does not lead to embrittlement but slightly increased strength compared to α titanium

•Two types of matensite

•Hexagonal α ' matensite- shows needle like fine basket-weave structure

•Orthorhombic α " martensite- quenching below 900°C, shows good deformability

Ref:- Titanium and Titanium Alloys, C. Leyens and M. Peters, Wiley publication

The mechanics of machining

Chip freeze experiments

Temperature measurement

S180 11/05/2011 Ta 25.0°C E 0.77 Dist. 5.00 Hum. 0 %

Chip microstructure at dry, LN2, elevated temperature machining condition

Increased machining affected zone(MAZ) and material is subjected higher strain rate with increased temperature

Machined edge

Optical image of chip obtained at 315 rpm feed rate of 0.11 mm/rev at 350°C heating

MAZ

Optical image of chip obtained at 315 rpm feed rate of 0.11 mm/rev at 500°C heating

Electron Back Scatter Diffraction of Machining affected zone

Machined edge 90 µm

Influence of speed on residual stress at Machined edge

Influence of speed (feed constant 0.097 mm/rev.)on residual stress at Machined edge

a. Phase quality map

b. Image quality map

c. SEM image

Fracture criteria

- Segmented chips even at low cutting speeds (saw tooth profile)
- Chip segmentation criteria
- Thermoplastic instability
- Initiation and propagation of cracks inside the primary shear zone of the workpiece material

Cockroft and Latham damage criterion: $C_i = \int_0^{\varepsilon_f} \sigma\left(\frac{\sigma^*}{\sigma}\right) d\varepsilon$. [4,5,6]

Johnson Cook (JC) fracture model: $D = \sum \frac{\Delta \varepsilon}{\varepsilon_f}$ [7,8,9] where, $\varepsilon_f = (D_1 + D_2 \exp(D_3 \sigma^*)) (1 + D_4 \ln(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0})) (1 + D_5 (\frac{T - T_{room}}{T_{melt} - T})^m)$ $\sigma^* = \frac{\sigma_m}{\sigma_v}$

Ref [4]"*Prediction of chip morphology and segmentation during the machining of titanium alloys*", Jiang Hua, Rajiv Shivpuri, Journal of Materials Processing Technology 150 (2004) 124–133

Ref [5] "*Finite element simulation of conventional and high speed machining of Ti6Al4V alloy*", Domenico Umbrello, Journal of materials processing technology 196 (2008) 79–87

Ref [6]"FEM simulation of orthogonal cutting: serrated chip formation", E. Ceretti, M. Lucchi, T. Altan,

Journal of Materials Processing Technology 95 (1999) 17-26

Ref[7]"*Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V*", J. Sun & Y. B. Guo,

Int J Adv Manuf Technol (2009) 41:651–659 Ref[8]"A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning", T. Mabrouki,

J.-F. Rigal, Journal of Materials Processing Technology 176 (2006) 214-221

Ref [9]"Modelling of hard part machining", Eu-Gene Ng, David K. Aspinwall, Journal of Materials Processing Technology 127 (2002) 222-229

Material Models

JC Model $\sigma = (A + B\varepsilon^{n}) \left(1 + C \cdot \ln \left(\frac{\varepsilon}{\varepsilon} \right) \right)$ $\left(1 - \left(\frac{T - T_{room}}{T_{melt}} \right)^{m} \right)$	Takes in to account strain hardening effect, viscosity effect softening effect.	Coupling effects of strain rate and temperature absent The parameters fitted to the stress– strain curves (SPHB)
Modified JC model $\sigma = \left(A + B\varepsilon^{n} \left(\frac{1}{\exp(\varepsilon^{a})}\right)\right) \left(1 + C \cdot \ln\left(\frac{\cdot}{\varepsilon}\right)\right)$ $\left(1 - \left(\frac{T - T_{room}}{T_{melt} - T}\right)^{m}\right) \left(D + (1 - D) \tanh\left(\frac{1}{(\varepsilon + s)^{c}}\right)\right)$	Incorporates the strain softening effect Was able to account for segmented chips formation at low cutting speed	The above mentioned models do not consider the effect of microstructure during machining.
Micromechanical Physic based model $\sigma = (1215 \cdot \varepsilon^{0.06}) + 601.2 \left[\left(1 - \left(-9.58X10^{-5}T.\ln\left(\frac{\cdot}{4.2X10^8}\right) \right)^{\frac{4}{5}} \right) \right]^{\frac{3}{4}}$	Flow stress has two parts: Athermal part (σ_a) Thermal part (σ^*)	Above critical temperature, gave a constant value of stress for all temperature hence not for machining
Modified Micromechanical physics based model $\sigma = (a\varepsilon^{n} + b)(cT^{*2} + dT^{*} + e)h(\varepsilon, \varepsilon)$	Temperature dependent flow softening	Phase change not incorporated.

FEM Simulation

a. at 23.4 m/min , room temp.

L 0.296421 L 0.30925 L 0.351436 L 0.259583 L 0.32988 L 0.282737 b. at 91.8 m/min, room temp.

Phase transformation calculation

Case Study 2

Aluminum sheet metal forming

Motivation

Large formability variation of same 5754 Al alloy processed through different processes

Alloy composition and processing

5754 Alloy	Mg wt%	Mn wt%	Cr wt%	Fe wt%	Si wt%
DC	3.0	0.25	0.01	0.18	<0.10
TBC	3.1	0.25	< 0.01	0.24	<0.10
TRC-I	2.8	0.01	< 0.01	0.25	0.10
TRC-II	2.9	0.01	<0.01	0.24	0.08

Typical microstructure of various 5754 alloys

Center-line Segregation

Discontinuous centerline segregation in TRC-II

Second phase particles

Two type of second phase particles are present

Through thickness microstructure variation

Mechanical properties along the rolling direction

TRC has lower YS and UTS than TBC or DC

Fractographic investigation (TRC-I)

Microvoid formation at particle clusters

Microstructure based FEA

Modeling particles as intersecting ellipses is a good approximation

FE predictions of uniaxial stress-strain behavior

Novelis has higher localization strain than Assan With in Assan, center region has lower localization strain than top Correlation of localization strain and Extreme Property Index (EPI)

EPI is identified as a key microstructural attribute

Plastic deformation by slip

Inverse pole figure maps

Rolling Direction

Fraction of various texture components

TBC has more rolling texture while TRC has more re-crystalization

texture

Summary

Conclusion

Multi-scale Multimodality Microstructure plays a central role in manufacturing processes.

1.) Machined surface quality and performance is a stronger function of microstructure.

2.) In forming particle distribution and texture can work in cross purpose.